Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2012, Volume 67, Issue 2, Pages 281–296
DOI: https://doi.org/10.1070/RM2012v067n02ABEH004787
(Mi rm9473)
 

This article is cited in 3 scientific papers (total in 3 papers)

Theory and applications of the problem of Euler elastica

M. I. Zelikinab

a Moscow State University
b Steklov Mathematical Institute of the Russian Academy of Sciences
References:
Abstract: The paper is devoted to the theory of extremal problems on Euler elastica. The Riccati equation method is used to study sufficient optimality conditions for the associated problem of minimization of the energy of a physical pendulum. Numerous applications are described for the problem of Euler elastica, and its connections with the theory of completely integrable Hamiltonian systems are discussed.
Bibliography: 10 titles.
Keywords: Pontryagin maximum principle, Riccati equation, elliptic functions, non-linear Schrödinger equation.
Received: 14.06.2011
Bibliographic databases:
Document Type: Article
UDC: 517.984
MSC: Primary 49-02; Secondary 37N10, 37N20, 49K15, 74K10, 76B47, 76M30
Language: English
Original paper language: Russian
Citation: M. I. Zelikin, “Theory and applications of the problem of Euler elastica”, Russian Math. Surveys, 67:2 (2012), 281–296
Citation in format AMSBIB
\Bibitem{Zel12}
\by M.~I.~Zelikin
\paper Theory and applications of the problem of Euler elastica
\jour Russian Math. Surveys
\yr 2012
\vol 67
\issue 2
\pages 281--296
\mathnet{http://mi.mathnet.ru//eng/rm9473}
\crossref{https://doi.org/10.1070/RM2012v067n02ABEH004787}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2978067}
\zmath{https://zbmath.org/?q=an:1248.49027}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012RuMaS..67..281Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305884700003}
\elib{https://elibrary.ru/item.asp?id=20423448}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84863666961}
Linking options:
  • https://www.mathnet.ru/eng/rm9473
  • https://doi.org/10.1070/RM2012v067n02ABEH004787
  • https://www.mathnet.ru/eng/rm/v67/i2/p93
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024