Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2011, Volume 66, Issue 5, Pages 871–932
DOI: https://doi.org/10.1070/RM2011v066n05ABEH004763
(Mi rm9441)
 

This article is cited in 2 scientific papers (total in 2 papers)

Generalized Bernoulli–Hurwitz numbers and the universal Bernoulli numbers

Y. Ônishi

University of Yamanashi, Japan
References:
Abstract: The three fundamental properties of the Bernoulli numbers, namely, the von Staudt–Clausen theorem, von Staudt's second theorem, and Kummer's original congruence, are generalized to new numbers that we call generalized Bernoulli–Hurwitz numbers. These are coefficients in the power series expansion of a higher-genus algebraic function with respect to a suitable variable. Our generalization differs strongly from previous works. Indeed, the order of the power of the modulus prime in our Kummer-type congruences is exactly the same as in the trigonometric function case (namely, Kummer's own congruence for the original Bernoulli numbers), and as in the elliptic function case (namely, H. Lang's extension for the Hurwitz numbers). However, in other past results on higher-genus algebraic functions, the modulus was at most half of its value in these classical cases. This contrast is clarified by investigating the analogue of the three properties above for the universal Bernoulli numbers.
Bibliography: 34 titles.
Keywords: Bernoulli numbers, Abelian functions, formal groups.
Received: 14.02.2011
Russian version:
Uspekhi Matematicheskikh Nauk, 2011, Volume 66, Issue 5(401), Pages 47–108
DOI: https://doi.org/10.4213/rm9441
Bibliographic databases:
Document Type: Article
UDC: 511.217+512.772+512.741
MSC: Primary 11B68; Secondary 14L05
Language: English
Original paper language: Russian
Citation: Y. Ônishi, “Generalized Bernoulli–Hurwitz numbers and the universal Bernoulli numbers”, Uspekhi Mat. Nauk, 66:5(401) (2011), 47–108; Russian Math. Surveys, 66:5 (2011), 871–932
Citation in format AMSBIB
\Bibitem{Oni11}
\by Y.~Ônishi
\paper Generalized Bernoulli--Hurwitz numbers and the universal Bernoulli numbers
\jour Uspekhi Mat. Nauk
\yr 2011
\vol 66
\issue 5(401)
\pages 47--108
\mathnet{http://mi.mathnet.ru/rm9441}
\crossref{https://doi.org/10.4213/rm9441}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2919272}
\zmath{https://zbmath.org/?q=an:1238.11024}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011RuMaS..66..871O}
\elib{https://elibrary.ru/item.asp?id=20423296}
\transl
\jour Russian Math. Surveys
\yr 2011
\vol 66
\issue 5
\pages 871--932
\crossref{https://doi.org/10.1070/RM2011v066n05ABEH004763}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298661300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855975782}
Linking options:
  • https://www.mathnet.ru/eng/rm9441
  • https://doi.org/10.1070/RM2011v066n05ABEH004763
  • https://www.mathnet.ru/eng/rm/v66/i5/p47
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:750
    Russian version PDF:284
    English version PDF:35
    References:44
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024