Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2011, Volume 66, Issue 5, Pages 829–870
DOI: https://doi.org/10.1070/RM2011v066n05ABEH004762
(Mi rm9440)
 

This article is cited in 53 scientific papers (total in 53 papers)

Theorems of Sylow type

E. P. Vdovinab, D. O. Revinab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
References:
Abstract: Let $\pi$ be a set of primes. Generalizing the known properties of Sylow subgroups, Hall introduced the classes $E_\pi$, $C_\pi$, and $D_\pi$ of finite groups that contain a Hall $\pi$-subgroup, precisely one conjugacy class of Hall $\pi$-subgroups, and precisely one conjugacy class of maximal $\pi$-subgroups, respectively. The present paper concerns results about $E_\pi$, $C_\pi$, and $D_\pi$ that have been obtained by different authors at different times.
Bibliography: 113 titles.
Keywords: Hall subgroup, finite group, finite simple group, Hall property, existence criterion for Hall subgroups, conjugacy criterion for Hall subgroups, finite groups of Lie type, an analogue of Sylow's theorem for Hall subgroups.
Received: 07.10.2010
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: Primary 20D20; Secondary 20D06, 20D08, 20D10
Language: English
Original paper language: Russian
Citation: E. P. Vdovin, D. O. Revin, “Theorems of Sylow type”, Russian Math. Surveys, 66:5 (2011), 829–870
Citation in format AMSBIB
\Bibitem{VdoRev11}
\by E.~P.~Vdovin, D.~O.~Revin
\paper Theorems of Sylow type
\jour Russian Math. Surveys
\yr 2011
\vol 66
\issue 5
\pages 829--870
\mathnet{http://mi.mathnet.ru//eng/rm9440}
\crossref{https://doi.org/10.1070/RM2011v066n05ABEH004762}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2919271}
\zmath{https://zbmath.org/?q=an:1243.20027}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011RuMaS..66..829V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298661300001}
\elib{https://elibrary.ru/item.asp?id=20423289}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855955165}
Linking options:
  • https://www.mathnet.ru/eng/rm9440
  • https://doi.org/10.1070/RM2011v066n05ABEH004762
  • https://www.mathnet.ru/eng/rm/v66/i5/p3
  • This publication is cited in the following 53 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025