Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2011, Volume 66, Issue 2, Pages 369–420
DOI: https://doi.org/10.1070/RM2011v066n02ABEH004742
(Mi rm9420)
 

This article is cited in 18 scientific papers (total in 18 papers)

Arithmetic hypergeometric series

W. Zudilin

School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, Australia
References:
Abstract: The main goal of this survey is to give common characteristics of auxiliary hypergeometric functions (and their generalisations), functions which occur in number-theoretic problems. Originally designed as a tool for solving these problems, the hypergeometric series have become a connecting link between different areas of number theory and mathematics in general.
Bibliography: 183 titles.
Keywords: hypergeometric series, zeta value, Ramanujan's mathematics, Diophantine approximation, irrationality measure, modular form, Calabi–Yau differential equation, Mahler measure, Wilf–Zeilberger theory, algorithm of creative telescoping.
Received: 18.02.2011
Bibliographic databases:
Document Type: Article
UDC: 511+517
MSC: Primary 33C20; Secondary 05A19, 11B65, 11F11, 11J82, 11M06, 11Y60, 14H52
Language: English
Original paper language: Russian
Citation: W. Zudilin, “Arithmetic hypergeometric series”, Russian Math. Surveys, 66:2 (2011), 369–420
Citation in format AMSBIB
\Bibitem{Zud11}
\by W.~Zudilin
\paper Arithmetic hypergeometric series
\jour Russian Math. Surveys
\yr 2011
\vol 66
\issue 2
\pages 369--420
\mathnet{http://mi.mathnet.ru//eng/rm9420}
\crossref{https://doi.org/10.1070/RM2011v066n02ABEH004742}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2847791}
\zmath{https://zbmath.org/?q=an:1225.33008}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011RuMaS..66..369Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294606300004}
\elib{https://elibrary.ru/item.asp?id=20423184}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79960160945}
Linking options:
  • https://www.mathnet.ru/eng/rm9420
  • https://doi.org/10.1070/RM2011v066n02ABEH004742
  • https://www.mathnet.ru/eng/rm/v66/i2/p163
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024