Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2011, Volume 66, Issue 1, Pages 145–171
DOI: https://doi.org/10.1070/RM2011v066n01ABEH004730
(Mi rm9406)
 

This article is cited in 2 scientific papers (total in 2 papers)

Lax operator algebras and Hamiltonian integrable hierarchies

O. K. Sheinman

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: This paper considers the theory of Lax equations with a spectral parameter on a Riemann surface, proposed by Krichever in 2001. The approach here is based on new objects, the Lax operator algebras, taking into consideration an arbitrary complex simple or reductive classical Lie algebra. For every Lax operator, regarded as a map sending a point of the cotangent bundle on the space of extended Tyurin data to an element of the corresponding Lax operator algebra, a hierarchy of mutually commuting flows given by the Lax equations is constructed, and it is proved that they are Hamiltonian with respect to the Krichever–Phong symplectic structure. The corresponding Hamiltonians give integrable finite-dimensional Hitchin-type systems. For example, elliptic $A_n$, $C_n$, and $D_n$ Calogero–Moser systems are derived in the framework of our approach.
Bibliography: 13 titles.
Keywords: infinite-dimensional Lie algebras, current algebras, Lax integrable systems, Hamiltonian theory.
Received: 09.12.2010
Russian version:
Uspekhi Matematicheskikh Nauk, 2011, Volume 66, Issue 1(397), Pages 151–178
DOI: https://doi.org/10.4213/rm9406
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Original paper language: Russian
Citation: O. K. Sheinman, “Lax operator algebras and Hamiltonian integrable hierarchies”, Uspekhi Mat. Nauk, 66:1(397) (2011), 151–178; Russian Math. Surveys, 66:1 (2011), 145–171
Citation in format AMSBIB
\Bibitem{She11}
\by O.~K.~Sheinman
\paper Lax operator algebras and Hamiltonian integrable hierarchies
\jour Uspekhi Mat. Nauk
\yr 2011
\vol 66
\issue 1(397)
\pages 151--178
\mathnet{http://mi.mathnet.ru/rm9406}
\crossref{https://doi.org/10.4213/rm9406}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2841688}
\zmath{https://zbmath.org/?q=an:1246.17029}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011RuMaS..66..145S}
\elib{https://elibrary.ru/item.asp?id=20423157}
\transl
\jour Russian Math. Surveys
\yr 2011
\vol 66
\issue 1
\pages 145--171
\crossref{https://doi.org/10.1070/RM2011v066n01ABEH004730}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294605900005}
\elib{https://elibrary.ru/item.asp?id=16998355}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959534235}
Linking options:
  • https://www.mathnet.ru/eng/rm9406
  • https://doi.org/10.1070/RM2011v066n01ABEH004730
  • https://www.mathnet.ru/eng/rm/v66/i1/p151
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:831
    Russian version PDF:275
    English version PDF:35
    References:63
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024