Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2010, Volume 65, Issue 6, Pages 1003–1081
DOI: https://doi.org/10.1070/RM2010v065n06ABEH004715
(Mi rm9382)
 

This article is cited in 21 scientific papers (total in 21 papers)

Independent functions and the geometry of Banach spaces

S. V. Astashkina, F. A. Sukochevb

a Samara State University
b School of Mathematics and Statistics, University of New South Wales, Kensington, Australia
References:
Abstract: The main objective of this survey is to present the ‘state of the art’ of those parts of the theory of independent functions which are related to the geometry of function spaces. The ‘size’ of a sum of independent functions is estimated in terms of classical moments and also in terms of general symmetric function norms. The exposition is centred on the Rosenthal inequalities and their various generalizations and sharp conditions under which the latter hold. The crucial tool here is the recently developed construction of the Kruglov operator. The survey also provides a number of applications to the geometry of Banach spaces. In particular, variants of the classical Khintchine–Maurey inequalities, isomorphisms between symmetric spaces on a finite interval and on the semi-axis, and a description of the class of symmetric spaces with any sequence of symmetrically and identically distributed independent random variables spanning a Hilbert subspace are considered.
Bibliography: 87 titles.
Keywords: independent functions, Khintchine inequalities, Kruglov property, Rosenthal inequalities, Kruglov operator, symmetric space, Orlicz space, Marcinkiewicz space, Lorentz space, Boyd indices, K-functional, real method of interpolation, integral-uniform norm.
Received: 21.06.2010
Bibliographic databases:
Document Type: Article
UDC: 517.5+517.982
MSC: Primary 46E30, 46B09, 46B20; Secondary 60B11, 46B70
Language: English
Original paper language: Russian
Citation: S. V. Astashkin, F. A. Sukochev, “Independent functions and the geometry of Banach spaces”, Russian Math. Surveys, 65:6 (2010), 1003–1081
Citation in format AMSBIB
\Bibitem{AstSuk10}
\by S.~V.~Astashkin, F.~A.~Sukochev
\paper Independent functions and the geometry of Banach spaces
\jour Russian Math. Surveys
\yr 2010
\vol 65
\issue 6
\pages 1003--1081
\mathnet{http://mi.mathnet.ru//eng/rm9382}
\crossref{https://doi.org/10.1070/RM2010v065n06ABEH004715}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2779360}
\zmath{https://zbmath.org/?q=an:1219.46025}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010RuMaS..65.1003A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000289953400001}
\elib{https://elibrary.ru/item.asp?id=20423113}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955647957}
Linking options:
  • https://www.mathnet.ru/eng/rm9382
  • https://doi.org/10.1070/RM2010v065n06ABEH004715
  • https://www.mathnet.ru/eng/rm/v65/i6/p3
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1331
    Russian version PDF:404
    English version PDF:37
    References:117
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024