Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2010, Volume 65, Issue 2, Pages 319–379
DOI: https://doi.org/10.1070/RM2010v065n02ABEH004673
(Mi rm9349)
 

This article is cited in 21 scientific papers (total in 21 papers)

Integrable billiards and quadrics

V. Dragovićab, M. Radnovića

a Mathematical Institute SASA, Belgrade, Serbia
b Mathematical Physics Group, University of Lisbon, Portugal
References:
Abstract: Billiards inside quadrics are considered as integrable dynamical systems with a rich geometric structure. The two-way interaction between the dynamics of billiards and the geometry of pencils of quadrics in an arbitrary dimension is considered. Several well-known classical and modern genus-1 results are generalized to arbitrary dimension and genus, such as: the Poncelet theorem, the Darboux theorem, the Weyr theorem, and the Griffiths–Harris space theorem. A synthetic approach to higher-genera addition theorems is presented.
Bibliography: 77 titles.
Keywords: hyperelliptic curve, Jacobian variety, Poncelet porism, periodic trajectories, Poncelet–Darboux grids, addition theorems.
Received: 03.02.2010
Bibliographic databases:
Document Type: Article
UDC: 517.938+531.01
MSC: Primary 37J35, 70J45; Secondary 58E07, 70H06
Language: English
Original paper language: Russian
Citation: V. Dragović, M. Radnović, “Integrable billiards and quadrics”, Russian Math. Surveys, 65:2 (2010), 319–379
Citation in format AMSBIB
\Bibitem{DraRad10}
\by V.~Dragovi{\'c}, M.~Radnovi{\'c}
\paper Integrable billiards and quadrics
\jour Russian Math. Surveys
\yr 2010
\vol 65
\issue 2
\pages 319--379
\mathnet{http://mi.mathnet.ru//eng/rm9349}
\crossref{https://doi.org/10.1070/RM2010v065n02ABEH004673}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2668802}
\zmath{https://zbmath.org/?q=an:1202.37078}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010RuMaS..65..319D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281639500003}
\elib{https://elibrary.ru/item.asp?id=20425357}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958554870}
Linking options:
  • https://www.mathnet.ru/eng/rm9349
  • https://doi.org/10.1070/RM2010v065n02ABEH004673
  • https://www.mathnet.ru/eng/rm/v65/i2/p133
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024