Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2010, Volume 65, Issue 2, Pages 191–257
DOI: https://doi.org/10.1070/RM2010v065n02ABEH004671
(Mi rm9348)
 

This article is cited in 18 scientific papers (total in 18 papers)

Hill's formula

S. V. Bolotinab, D. V. Treschevca

a Steklov Mathematical Institute, Russian Academy of Sciences
b University of Wisconsin-Madison, USA
c M. V. Lomonosov Moscow State University
References:
Abstract: In his study of periodic orbits of the three-body problem, Hill obtained a formula connecting the characteristic polynomial of the monodromy matrix of a periodic orbit with the infinite determinant of the Hessian of the action functional. A mathematically rigorous definition of the Hill determinant and a proof of Hill's formula were obtained later by Poincaré. Here two multidimensional generalizations of Hill's formula are given: for discrete Lagrangian systems (symplectic twist maps) and for continuous Lagrangian systems. Additional aspects appearing in the presence of symmetries or reversibility are discussed. Also studied is the change of the Morse index of a periodic trajectory upon reduction of order in a system with symmetries. Applications are given to the problem of stability of periodic orbits.
Bibliography: 34 titles.
Keywords: periodic solution, stability, Lagrangian system, multipliers, billiard system.
Received: 25.02.2010
Russian version:
Uspekhi Matematicheskikh Nauk, 2010, Volume 65, Issue 2(392), Pages 3–70
DOI: https://doi.org/10.4213/rm9348
Bibliographic databases:
Document Type: Article
UDC: 531.01
MSC: 34D05, 37Jxx, 70H03
Language: English
Original paper language: Russian
Citation: S. V. Bolotin, D. V. Treschev, “Hill's formula”, Uspekhi Mat. Nauk, 65:2(392) (2010), 3–70; Russian Math. Surveys, 65:2 (2010), 191–257
Citation in format AMSBIB
\Bibitem{BolTre10}
\by S.~V.~Bolotin, D.~V.~Treschev
\paper Hill's formula
\jour Uspekhi Mat. Nauk
\yr 2010
\vol 65
\issue 2(392)
\pages 3--70
\mathnet{http://mi.mathnet.ru/rm9348}
\crossref{https://doi.org/10.4213/rm9348}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2668800}
\zmath{https://zbmath.org/?q=an:05776177}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010RuMaS..65..191B}
\elib{https://elibrary.ru/item.asp?id=20425345}
\transl
\jour Russian Math. Surveys
\yr 2010
\vol 65
\issue 2
\pages 191--257
\crossref{https://doi.org/10.1070/RM2010v065n02ABEH004671}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281639500001}
\elib{https://elibrary.ru/item.asp?id=16978186}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958613100}
Linking options:
  • https://www.mathnet.ru/eng/rm9348
  • https://doi.org/10.1070/RM2010v065n02ABEH004671
  • https://www.mathnet.ru/eng/rm/v65/i2/p3
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1726
    Russian version PDF:627
    English version PDF:33
    References:134
    First page:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024