Успехи математических наук
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов
Загрузить рукопись
Историческая справка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



УМН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Успехи математических наук, 2010, том 65, выпуск 2(392), страницы 3–70
DOI: https://doi.org/10.4213/rm9348
(Mi rm9348)
 

Эта публикация цитируется в 18 научных статьях (всего в 18 статьях)

Формула Хилла

С. В. Болотинab, Д. В. Трещёвca

a Математический институт им. В. А. Стеклова РАН
b University of Wisconsin-Madison, USA
c Московский государственный университет им. М. В. Ломоносова
Список литературы:
Аннотация: Изучая периодические орбиты задачи трех тел, Хилл получил формулу, связывающую характеристический многочлен матрицы монодромии периодической орбиты с бесконечным определителем гессиана функционала действия. Математически строгое определение определителя Хилла и доказательство формулы Хилла были даны позднее Пуанкаре. В данной работе рассмотрены два многомерных обобщения формулы Хилла: для дискретных лагранжевых систем (симплектических закручивающих отображений) и для непрерывных лагранжевых систем. Мы обсуждаем дополнительные аспекты, появляющиеся при наличии симметрий или обратимости. Мы также изучаем изменение индекса Морса периодической траектории при понижении порядка в системах с симметриями. Даны применения к задаче об устойчивости периодических траекторий.
Библиография: 34 названия.
Ключевые слова: периодическое решение, устойчивость, лагранжева система, мультипликаторы, биллиард.
Поступила в редакцию: 25.02.2010
Англоязычная версия:
Russian Mathematical Surveys, 2010, Volume 65, Issue 2, Pages 191–257
DOI: https://doi.org/10.1070/RM2010v065n02ABEH004671
Реферативные базы данных:
Тип публикации: Статья
УДК: 531.01
MSC: 34D05, 37Jxx, 70H03
Образец цитирования: С. В. Болотин, Д. В. Трещёв, “Формула Хилла”, УМН, 65:2(392) (2010), 3–70; Russian Math. Surveys, 65:2 (2010), 191–257
Цитирование в формате AMSBIB
\RBibitem{BolTre10}
\by С.~В.~Болотин, Д.~В.~Трещёв
\paper Формула Хилла
\jour УМН
\yr 2010
\vol 65
\issue 2(392)
\pages 3--70
\mathnet{http://mi.mathnet.ru/rm9348}
\crossref{https://doi.org/10.4213/rm9348}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2668800}
\zmath{https://zbmath.org/?q=an:05776177}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010RuMaS..65..191B}
\elib{https://elibrary.ru/item.asp?id=20425345}
\transl
\jour Russian Math. Surveys
\yr 2010
\vol 65
\issue 2
\pages 191--257
\crossref{https://doi.org/10.1070/RM2010v065n02ABEH004671}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281639500001}
\elib{https://elibrary.ru/item.asp?id=16978186}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958613100}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rm9348
  • https://doi.org/10.4213/rm9348
  • https://www.mathnet.ru/rus/rm/v65/i2/p3
  • Эта публикация цитируется в следующих 18 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Статистика просмотров:
    Страница аннотации:1749
    PDF русской версии:638
    PDF английской версии:40
    Список литературы:140
    Первая страница:63
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024