Loading [MathJax]/jax/output/SVG/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2009, Volume 64, Issue 6, Pages 1079–1130
DOI: https://doi.org/10.1070/RM2009v064n06ABEH004653
(Mi rm9331)
 

This article is cited in 4 scientific papers (total in 4 papers)

Orbifold Riemann surfaces: Teichmüller spaces and algebras of geodesic functions

M. Mazzoccoa, L. O. Chekhovbcd

a Loughborough University, UK
b Alikhanov Institute for Theoretical and~Experimental Physics, Moscow
c Steklov Mathematical Institute, Moscow
d Laboratoire Poncelet Franco--Russie, Moscow
References:
Abstract: A fat graph description is given for Teichmüller spaces of\linebreak Riemann surfaces with holes and with ${\mathbb Z}_2$- and ${\mathbb Z}_3$-orbifold points (conical singularities) in the Poincaré uniformization. The corresponding mapping class group transformations are presented, geodesic functions are constructed, and the Poisson structure is introduced. The resulting Poisson algebras are then quantized. In the particular cases of surfaces with $n$ ${\mathbb Z}_2$-orbifold points and with one and two holes, the respective algebras $A_n$ and $D_n$ of geodesic functions (classical and quantum) are obtained. The infinite-dimensional Poisson algebra ${\mathfrak D}_n$, which is the semiclassical limit of the twisted $q$-Yangian algebra $Y'_q(\mathfrak{o}_n)$ for the orthogonal Lie algebra $\mathfrak{o}_n$, is associated with the algebra of geodesic functions on an annulus with $n$ ${\mathbb Z}_2$-orbifold points, and the braid group action on this algebra is found. From this result the braid group actions are constructed on the finite-dimensional reductions of this algebra: the $p$-level reduction and the algebra $D_n$. The central elements for these reductions are found. Also, the algebra ${\mathfrak D}_n$ is interpreted as the Poisson algebra of monodromy data of a Frobenius manifold in the vicinity of a non-semisimple point.
Bibliography: 36 titles.
Keywords: conical singularities, moduli space, geodesic algebra, quantization.
Received: 10.11.2009
Bibliographic databases:
Document Type: Article
UDC: 515.165.7+517.545
MSC: Primary 30F60, 32G15; Secondary 53D17
Language: English
Original paper language: Russian
Citation: M. Mazzocco, L. O. Chekhov, “Orbifold Riemann surfaces: Teichmüller spaces and algebras of geodesic functions”, Russian Math. Surveys, 64:6 (2009), 1079–1130
Citation in format AMSBIB
\Bibitem{MazChe09}
\by M.~Mazzocco, L.~O.~Chekhov
\paper Orbifold Riemann surfaces: Teichm\"uller~spaces and algebras of geodesic functions
\jour Russian Math. Surveys
\yr 2009
\vol 64
\issue 6
\pages 1079--1130
\mathnet{http://mi.mathnet.ru//eng/rm9331}
\crossref{https://doi.org/10.1070/RM2009v064n06ABEH004653}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2640967}
\zmath{https://zbmath.org/?q=an:05711123}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009RuMaS..64.1079M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000278425000002}
\elib{https://elibrary.ru/item.asp?id=20425328}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77951282463}
Linking options:
  • https://www.mathnet.ru/eng/rm9331
  • https://doi.org/10.1070/RM2009v064n06ABEH004653
  • https://www.mathnet.ru/eng/rm/v64/i6/p117
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025