Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2008, Volume 63, Issue 2, Pages 205–220
DOI: https://doi.org/10.1070/RM2008v063n02ABEH004514
(Mi rm9191)
 

This article is cited in 17 scientific papers (total in 17 papers)

To what extent are arithmetic progressions of fractional parts stochastic?

V. I. Arnol'd

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: For the sequence of residues of division of $n$ members of an arithmetic progression by a real number $N$, it is proved that the Kolmogorov stochasticity parameter $\lambda_n$ tends to 0 as $n$ tends to infinity when the progression step is commensurable with $N$. In contrast, for the case when the step is incommensurable with $N$, examples are given in which the stochasticity parameter $\lambda_n$ not only does not tend to 0, but even takes some arbitrary large values (infrequently). Too small and too large values of the stochasticity parameter both indicate a small probability that the corresponding sequence is random. Thus, long arithmetic progressions of fractional parts are apparently much less stochastic than for geometric progressions (which provide moderate values of the stochasticity parameter, similar to its values for genuinely random sequences).
Received: 10.12.2007
Bibliographic databases:
Document Type: Article
MSC: Primary 11B25; Secondary 11A55, 11K45
Language: English
Original paper language: Russian
Citation: V. I. Arnol'd, “To what extent are arithmetic progressions of fractional parts stochastic?”, Russian Math. Surveys, 63:2 (2008), 205–220
Citation in format AMSBIB
\Bibitem{Arn08}
\by V.~I.~Arnol'd
\paper To what extent are arithmetic progressions of fractional parts stochastic?
\jour Russian Math. Surveys
\yr 2008
\vol 63
\issue 2
\pages 205--220
\mathnet{http://mi.mathnet.ru//eng/rm9191}
\crossref{https://doi.org/10.1070/RM2008v063n02ABEH004514}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2640554}
\zmath{https://zbmath.org/?q=an:05503254}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008RuMaS..63..205A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000259031200002}
\elib{https://elibrary.ru/item.asp?id=20425093}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-52049102046}
Linking options:
  • https://www.mathnet.ru/eng/rm9191
  • https://doi.org/10.1070/RM2008v063n02ABEH004514
  • https://www.mathnet.ru/eng/rm/v63/i2/p5
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1676
    Russian version PDF:617
    English version PDF:35
    References:125
    First page:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024