Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2004, Volume 59, Issue 6, Pages 1181–1203
DOI: https://doi.org/10.1070/RM2004v059n06ABEH000801
(Mi rm801)
 

This article is cited in 3 scientific papers (total in 3 papers)

Harmonic maps into homogeneous Riemannian manifolds: twistor approach

A. G. Sergeev

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: This paper deals with the twistor approach to the study of harmonic maps $\varphi\colon M\to N$ from Riemann surfaces $M$ to Riemannian manifolds $N$. Let $N$ be a given Riemannian manifold and let $Z$ be an almost complex manifold. The idea of the approach is to construct a so-called twistor bundle $\pi\colon Z\to N$ with the following property: the projection $\pi\circ\psi\colon M\to N$ of any almost holomorphic map $\psi\colon M\to Z$ is a harmonic map. For wide classes of Riemannian manifolds $N$ the twistor approach enables one to construct all harmonic maps $\varphi\colon M\to N$ in this way, thus reducing the original real problem of describing the harmonic maps into Riemannian manifolds to the complex problem of describing the almost holomorphic maps into almost complex manifolds. In this paper a detailed study is made of the following classes of homogeneous Riemannian manifolds $N$ to which the twistor approach can be applied: the compact Lie groups, the loop spaces of such groups, and the Grassmann manifolds, including the Hilbert Grassmannian.
Received: 03.11.2004
Bibliographic databases:
Document Type: Article
UDC: 517.957
MSC: Primary 58E20, 53C28, 32L25; Secondary 53C30, 14D21, 14M15, 53C55
Language: English
Original paper language: Russian
Citation: A. G. Sergeev, “Harmonic maps into homogeneous Riemannian manifolds: twistor approach”, Russian Math. Surveys, 59:6 (2004), 1181–1203
Citation in format AMSBIB
\Bibitem{Ser04}
\by A.~G.~Sergeev
\paper Harmonic maps into homogeneous Riemannian manifolds: twistor approach
\jour Russian Math. Surveys
\yr 2004
\vol 59
\issue 6
\pages 1181--1203
\mathnet{http://mi.mathnet.ru//eng/rm801}
\crossref{https://doi.org/10.1070/RM2004v059n06ABEH000801}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2138473}
\zmath{https://zbmath.org/?q=an:1075.53043}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004RuMaS..59.1181S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000228734800010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-17744394718}
Linking options:
  • https://www.mathnet.ru/eng/rm801
  • https://doi.org/10.1070/RM2004v059n06ABEH000801
  • https://www.mathnet.ru/eng/rm/v59/i6/p177
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:647
    Russian version PDF:241
    English version PDF:33
    References:89
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024