Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2004, Volume 59, Issue 2, Pages 329–353
DOI: https://doi.org/10.1070/RM2004v059n02ABEH000722
(Mi rm722)
 

This article is cited in 19 scientific papers (total in 19 papers)

Rigidity for circle diffeomorphisms with singularities

A. Yu. Teplinskiia, K. M. Khaninbcd

a Institute of Mathematics, Ukrainian National Academy of Sciences
b L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
c Heriot Watt University
d Isaac Newton Institute for Mathematical Sciences
References:
Abstract: This paper reviews recent results related to rigidity theory for circle diffeomorphisms with singularities. Both diffeomorphisms with a break point (sometimes called a ‘fracture-type singularity’ or ‘weak discontinuity’) and critical circle maps are discussed. In the case of breaks, results are presented on the global hyperbolicity of the renormalization operator; this property implies the existence of an attractor of the Smale horseshoe type. It is also shown that for maps with singularities rigidity is stronger than for diffeomorphisms, in the sense that rigidity is not violated for non-generic rotation numbers, which are abnormally well approximable by rationals. In the case of critical rotations of the circle it is proved that any two such rotations with the same order of the singular point and the same irrational rotation number are $C^1$-smoothly conjugate.
Received: 19.06.2003
Russian version:
Uspekhi Matematicheskikh Nauk, 2004, Volume 59, Issue 2(356), Pages 137–160
DOI: https://doi.org/10.4213/rm722
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: Primary 37E10; Secondary 37E20, 37E45, 37J40, 11J70, 11J25
Language: English
Original paper language: Russian
Citation: A. Yu. Teplinskii, K. M. Khanin, “Rigidity for circle diffeomorphisms with singularities”, Uspekhi Mat. Nauk, 59:2(356) (2004), 137–160; Russian Math. Surveys, 59:2 (2004), 329–353
Citation in format AMSBIB
\Bibitem{TepKha04}
\by A.~Yu.~Teplinskii, K.~M.~Khanin
\paper Rigidity for circle diffeomorphisms with singularities
\jour Uspekhi Mat. Nauk
\yr 2004
\vol 59
\issue 2(356)
\pages 137--160
\mathnet{http://mi.mathnet.ru/rm722}
\crossref{https://doi.org/10.4213/rm722}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2086641}
\zmath{https://zbmath.org/?q=an:1054.37018}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004RuMaS..59..329T}
\elib{https://elibrary.ru/item.asp?id=14522408}
\transl
\jour Russian Math. Surveys
\yr 2004
\vol 59
\issue 2
\pages 329--353
\crossref{https://doi.org/10.1070/RM2004v059n02ABEH000722}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000223519000009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-4344653700}
Linking options:
  • https://www.mathnet.ru/eng/rm722
  • https://doi.org/10.1070/RM2004v059n02ABEH000722
  • https://www.mathnet.ru/eng/rm/v59/i2/p137
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:780
    Russian version PDF:295
    English version PDF:20
    References:74
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024