Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2004, Volume 59, Issue 1, Pages 65–90
DOI: https://doi.org/10.1070/RM2004v059n01ABEH000701
(Mi rm701)
 

This article is cited in 73 scientific papers (total in 73 papers)

Lévy-based spatial-temporal modelling, with applications to turbulence

O. E. Barndorff-Nielsen, J. Schmiegel

University of Aarhus
References:
Abstract: This paper involves certain types of spatial-temporal models constructed from Lévy bases. The dynamics is described by a field of stochastic processes $X=\{X_t(\sigma)\}$, on a set $\mathscr S$ of sites $\sigma$, defined as integrals
$$ X_t(\sigma)=\int_{-\infty}^t\int_{\mathscr S}f_t(\rho,s;\sigma)\,Z(\mathrm d\rho\times\mathrm ds), $$
where $Z$ denotes a Lévy basis. The integrands $f$ are deterministic functions of the form $f_t(\rho,s;\sigma)=h_t(\rho,s;\sigma)\mathbf 1_{A_t(\sigma)}(\rho,\sigma)$, where $h_t(\rho,s;\sigma)$ has a special form and $A_t(\sigma)$ is a subset of $\mathscr S\times \mathbb R_{\leqslant t}$. The first topic is OU (Ornstein–Uhlenbeck) fields $X_t(\sigma)$, which represent certain extensions of the concept of OU processes (processes of Ornstein–Uhlenbeck type); the focus here is mainly on the potential of $X_t(\sigma)$ for dynamic modelling. Applications to dynamical spatial processes of Cox type are briefly indicated. The second part of the paper discusses modelling of spatial-temporal correlations of SI (stochastic intermittency) fields of the form
$$ Y_t(\sigma)=\exp\{X_t(\sigma)\}. $$
This form is useful when explicitly computing expectations of the form
$$ \mathsf E\{Y_{t_1}(\sigma_1)\cdots Y_{t_n}(\sigma_n)\}, $$
which are used to characterize correlations. The SI fields can be viewed as a dynamical, continuous, and homogeneous generalization of turbulent cascades. In this connection an SI field is constructed with spatial-temporal scaling behaviour that agrees with the energy dissipation observed in turbulent flows. Some parallels of this construction are also briefly sketched.
Received: 20.06.2003
Bibliographic databases:
Document Type: Article
UDC: 519.248:53
MSC: Primary 60G35, 76F55; Secondary 62P05, 91B28, 60E07, 60G51, 60G57, 60G60
Language: English
Original paper language: Russian
Citation: O. E. Barndorff-Nielsen, J. Schmiegel, “Lévy-based spatial-temporal modelling, with applications to turbulence”, Russian Math. Surveys, 59:1 (2004), 65–90
Citation in format AMSBIB
\Bibitem{BarSch04}
\by O.~E.~Barndorff-Nielsen, J.~Schmiegel
\paper L\'evy-based spatial-temporal modelling, with applications to turbulence
\jour Russian Math. Surveys
\yr 2004
\vol 59
\issue 1
\pages 65--90
\mathnet{http://mi.mathnet.ru//eng/rm701}
\crossref{https://doi.org/10.1070/RM2004v059n01ABEH000701}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2068843}
\zmath{https://zbmath.org/?q=an:1062.60039}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004RuMaS..59...65B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000222298300005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-3042776069}
Linking options:
  • https://www.mathnet.ru/eng/rm701
  • https://doi.org/10.1070/RM2004v059n01ABEH000701
  • https://www.mathnet.ru/eng/rm/v59/i1/p63
  • This publication is cited in the following 73 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1594
    Russian version PDF:298
    English version PDF:27
    References:105
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024