Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2007, Volume 62, Issue 4, Pages 663–712
DOI: https://doi.org/10.1070/RM2007v062n04ABEH004428
(Mi rm6849)
 

This article is cited in 15 scientific papers (total in 15 papers)

Random walks in a random (fluctuating) environment

C. Boldrighinia, R. A. Minlosb, A. Pellegrinottic

a University of Rome "La Sapienza"
b Institute for Information Transmission Problems, Russian Academy of Sciences
c Università degli Studi Roma Tre
References:
Abstract: The main purpose of this paper is to prove the central limit theorem for the position at large times of a particle performing a discrete-time random walk on the lattice $\mathbb Z^d$ when the particle interacts with a random ‘environment’ (and starts out at a fixed point of the lattice). Two cases are considered for the distribution of the particle position: first, the distribution when the configuration of the ‘environment’ (that is, of the random field) is fixed at all points of the ‘space-time’ $\mathbb Z^{d+1}$ (the so-called quenched model), and, second, the distribution induced by the joint evolution of the environment and the particle position under the assumption that the pair forms a Markov chain (the annealed model). Two cases are considered also for the quenched model: the values of the field at all points of ‘space-time’ are independent and identically distributed, or the values of the field at different times are linked by a homogeneous Markov chain. In the case of quenched models the central limit theorem with one and the same limit law is true for almost all configurations of the ‘environment’, and in the case of annealed models it is true for any initial distribution of the field. Besides the central limit theorem, the paper briefly treats some other topics related to these models (decay of correlations, large deviations, ‘the field from the viewpoint of a particle’, and so on).
Received: 27.03.2007
Russian version:
Uspekhi Matematicheskikh Nauk, 2007, Volume 62, Issue 4(376), Pages 27–76
DOI: https://doi.org/10.4213/rm6849
Bibliographic databases:
Document Type: Article
UDC: 519.21
MSC: Primary 60G50; Secondary 60K37, 60G60, 82B41
Language: English
Original paper language: Russian
Citation: C. Boldrighini, R. A. Minlos, A. Pellegrinotti, “Random walks in a random (fluctuating) environment”, Uspekhi Mat. Nauk, 62:4(376) (2007), 27–76; Russian Math. Surveys, 62:4 (2007), 663–712
Citation in format AMSBIB
\Bibitem{BolMinPel07}
\by C.~Boldrighini, R.~A.~Minlos, A.~Pellegrinotti
\paper Random walks in a~random (fluctuating) environment
\jour Uspekhi Mat. Nauk
\yr 2007
\vol 62
\issue 4(376)
\pages 27--76
\mathnet{http://mi.mathnet.ru/rm6849}
\crossref{https://doi.org/10.4213/rm6849}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2358736}
\zmath{https://zbmath.org/?q=an:1145.60052}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007RuMaS..62..663B}
\elib{https://elibrary.ru/item.asp?id=25787417}
\transl
\jour Russian Math. Surveys
\yr 2007
\vol 62
\issue 4
\pages 663--712
\crossref{https://doi.org/10.1070/RM2007v062n04ABEH004428}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000251687100002}
\elib{https://elibrary.ru/item.asp?id=13534297}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38149125442}
Linking options:
  • https://www.mathnet.ru/eng/rm6849
  • https://doi.org/10.1070/RM2007v062n04ABEH004428
  • https://www.mathnet.ru/eng/rm/v62/i4/p27
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:793
    Russian version PDF:358
    English version PDF:15
    References:68
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024