Citation:
I. A. Taimanov, S. P. Tsarev, “Two-dimensional Schrödinger operators with fast decaying potential and multidimensional L2-kernel”, Russian Math. Surveys, 62:3 (2007), 631–633
This publication is cited in the following 17 articles:
M. M. Malamud, V. V. Marchenko, “On Kernels of Invariant Schrödinger Operators with Point Interactions. Grinevich–Novikov Conjecture”, Dokl. Math., 109:2 (2024), 125
M. M. Malamud, V. V. Marchenko, “On kernels of invariant Schrödinger operators with point interactions. Grinevich–Novikov problem”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 516 (2024), 31
I. A. Taimanov, “The Moutard Transformation for the Davey–Stewartson II Equation and Its Geometrical Meaning”, Math. Notes, 110:5 (2021), 754–766
R. G. Novikov, I. A. Taimanov, “Darboux–Moutard transformations and Poincaré–Steklov operators”, Proc. Steklov Inst. Math., 302 (2018), 315–324
Adilkhanov A.N., Taimanov I.A., “On numerical study of the discrete spectrum of a two-dimensional Schrödinger operator with soliton potential”, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 83–92
P. G. Grinevich, R. G. Novikov, “Multipoint scatterers with bound states at zero energy”, Theoret. and Math. Phys., 193:2 (2017), 1675–1679
Croke R. Mueller J.L. Music M. Perry P. Siltanen S. Stahel A., “the Novikov-Veselov Equation: Theory and Computation”, Nonlinear Wave Equations: Analytic and Computational Techniques, Contemporary Mathematics, 635, ed. Curtis C. Dzhamay A. Hereman W. Prinari B., Amer Mathematical Soc, 2015, 25–70
R. G. Novikov, I. A. Taimanov, S. P. Tsarev, “Two-Dimensional von Neumann–Wigner Potentials with a Multiple Positive Eigenvalue”, Funct. Anal. Appl., 48:4 (2014), 295–297
Perry P.A., “Miura Maps and Inverse Scattering For the Novikov-Veselov Equation”, Anal. PDE, 7:2 (2014), 311–343
M Music, P Perry, S Siltanen, “Exceptional circles of radial potentials”, Inverse Problems, 29:4 (2013), 045004
A.G. Kudryavtsev, “Exactly solvable two-dimensional stationary Schrödinger operators obtained by the nonlocal Darboux transformation”, Physics Letters A, 2013
E. I. Ganzha, “Euler Integrals and Multi-Integrals of Linear Partial Differential Equations”, Math. Notes, 89:1 (2011), 37–50
I. A. Taimanov, S. P. Tsarev, “On the Moutard transformation and its applications to spectral theory and soliton equations”, Journal of Mathematical Sciences, 170:3 (2010), 371–387
S. P. Tsarev, E. S. Shemyakova, “Differential Transformations of Parabolic Second-Order Operators in the Plane”, Proc. Steklov Inst. Math., 266 (2009), 219–227
I. A. Taimanov, S. P. Tsarev, “Blowing up solutions of the Novikov-Veselov equation”, Dokl. Math., 77:3 (2008), 467–468
I. A. Taimanov, S. P. Tsarev, “Two-dimensional rational solitons and their blowup via the Moutard
transformation”, Theoret. and Math. Phys., 157:2 (2008), 1525–1541