Loading [MathJax]/jax/output/SVG/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2007, Volume 62, Issue 3, Pages 409–451
DOI: https://doi.org/10.1070/RM2007v062n03ABEH004410
(Mi rm6811)
 

This article is cited in 125 scientific papers (total in 125 papers)

Euler equations for incompressible ideal fluids

C. Bardosa, E. S. Titib

a Université Paris VII – Denis Diderot
b University of California, Irvine
References:
Abstract: This article is a survey concerning the state-of-the-art mathematical theory of the Euler equations for an incompressible homogeneous ideal fluid. Emphasis is put on the different types of emerging instability, and how they may be related to the description of turbulence.
Received: 02.04.2007
Bibliographic databases:
Document Type: Article
UDC: 517.958+531.3-322
MSC: Primary 35Q05; Secondary 35Q30, 76Bxx, 76Dxx, 76Fxx
Language: English
Original paper language: Russian
Citation: C. Bardos, E. S. Titi, “Euler equations for incompressible ideal fluids”, Russian Math. Surveys, 62:3 (2007), 409–451
Citation in format AMSBIB
\Bibitem{BarTit07}
\by C.~Bardos, E.~S.~Titi
\paper Euler equations for incompressible ideal fluids
\jour Russian Math. Surveys
\yr 2007
\vol 62
\issue 3
\pages 409--451
\mathnet{http://mi.mathnet.ru/eng/rm6811}
\crossref{https://doi.org/10.1070/RM2007v062n03ABEH004410}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2355417}
\zmath{https://zbmath.org/?q=an:1139.76010}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007RuMaS..62..409B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000250483500002}
\elib{https://elibrary.ru/item.asp?id=25787395}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35748978223}
Linking options:
  • https://www.mathnet.ru/eng/rm6811
  • https://doi.org/10.1070/RM2007v062n03ABEH004410
  • https://www.mathnet.ru/eng/rm/v62/i3/p5
  • This publication is cited in the following 125 articles:
    1. Dengjun Guo, Lifeng Zhao, “Global well-posedness of weak solutions to the incompressible Euler equations with helical symmetry in R3”, Journal of Differential Equations, 416 (2025), 806  crossref
    2. Alexander Kiselev, Jaemin Park, Yao Yao, “Small scale formation for the 2-dimensional Boussinesq equation”, Analysis & PDE, 18:1 (2025), 171  crossref
    3. Haithem E. Taha, Mohamed Shorbagy, AIAA SCITECH 2025 Forum, 2025  crossref
    4. Lin Lü, “Hölder continuous solutions to stochastic 3D Euler equations via stochastic convex integration”, J. Evol. Equ., 25:2 (2025)  crossref
    5. Claude Bardos, Daniel W. Boutros, Edriss S. Titi, “Hölder Regularity of the Pressure for Weak Solutions of the 3D Euler Equations in Bounded Domains”, Arch Rational Mech Anal, 249:3 (2025)  crossref
    6. Tobias Barker, Christophe Prange, Jin Tan, “On Symmetry Breaking for the Navier–Stokes Equations”, Commun. Math. Phys., 405:2 (2024)  crossref
    7. Justin T Cole, Abdullah M Aurko, Ziad H Musslimani, “Collapse dynamics for two-dimensional space-time nonlocal nonlinear Schrödinger equations”, Nonlinearity, 37:4 (2024), 045001  crossref
    8. Claude Bardos, Xin Liu, Edriss S. Titi, “Derivation of a Generalized Quasi-Geostrophic Approximation for Inviscid Flows in a Channel Domain: The Fast Waves Correction”, Commun. Math. Phys., 405:7 (2024)  crossref
    9. O. N. Shablovskii, “Razryvnoe konicheski simmetrichnoe techenie idealnoi neszhimaemoi zhidkosti”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2024, no. 88, 149–163  mathnet  crossref
    10. Boris Khesin, Gerard Misiołek, Alexander Shnirelman, “Geometric Hydrodynamics in Open Problems”, Arch Rational Mech Anal, 247:2 (2023)  crossref
    11. Huaqiao Wang, “Large deviation principles of 2D stochastic Navier–Stokes equations with Lévy noises”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 153:1 (2023), 19  crossref
    12. Hongxia Lin, Qing Sun, Sen Liu, Heng Zhang, “The Stability and Decay for the 2D Incompressible Euler-Like Equations”, J. Math. Fluid Mech., 25:4 (2023)  crossref
    13. Ghoul T.E., Ibrahim S., Lin Q., Titi E.S., “On the Effect of Rotation on the Life-Span of Analytic Solutions to the 3D Inviscid Primitive Equations”, Arch. Ration. Mech. Anal., 243:2 (2022), 747–806  crossref  mathscinet  isi
    14. Chae D., Wolf J., “Localized Non Blow-Up Criterion of the Beale-Kato-Majda Type For the 3D Euler Equations”, Math. Ann., 383:3-4 (2022), 837–865  crossref  isi
    15. Ilyin A., Kostianko A., Zelik S., “Trajectory Attractors For 3D Damped Euler Equations and Their Approximation”, Discret. Contin. Dyn. Syst.-Ser. S, 15:8 (2022), 2275  crossref  mathscinet  isi  scopus
    16. Robin Ming Chen, Zhilei Liang, Dehua Wang, “A Kato-Type Criterion for Vanishing Viscosity Near Onsager's Critical Regularity”, Arch Rational Mech Anal, 246:2-3 (2022), 535  crossref
    17. Dongho Chae, KIAS Springer Series in Mathematics, 1, Recent Progress in Mathematics, 2022, 43  crossref
    18. Elgindi T.M., “Finite-Time Singularity Formation For C-1,C-Alpha Solutions to the Incompressible Euler Equations on R-3”, Ann. Math., 194:3 (2021), 647–727  crossref  mathscinet  isi
    19. Chen J., Hou T.Y., “Finite Time Blowup of 2D Boussinesq and 3D Euler Equations With C-1,C-Alpha Velocity and Boundary”, Commun. Math. Phys., 383:3 (2021), 1559–1667  crossref  mathscinet  isi  scopus
    20. Ibrahim S., Lin Q., Titi E.S., “Finite-Time Blowup and Ill-Posedness in Sobolev Spaces of the Inviscid Primitive Equations With Rotation”, J. Differ. Equ., 286 (2021), 557–577  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:2514
    Russian version PDF:2567
    English version PDF:172
    References:141
    First page:14
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025