Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2007, Volume 62, Issue 3, Pages 535–560
DOI: https://doi.org/10.1070/RM2007v062n03ABEH004411
(Mi rm6760)
 

This article is cited in 10 scientific papers (total in 10 papers)

Orthonormal quaternion frames, Lagrangian evolution equations, and the three-dimensional Euler equations

J. Gibbon

Imperial College, Department of Mathematics
References:
Abstract: More than 160 years after their invention by Hamilton, quaternions are now widely used in the aerospace and computer animation industries to track the orientation and paths of moving objects undergoing three-axis rotations. Here it is shown that they provide a natural way of selecting an appropriate orthonormal frame — designated the quaternion-frame — for a particle in a Lagrangian flow, and of obtaining the equations for its dynamics. How these ideas can be applied to the three-dimensional Euler fluid equations is then considered. This work has some bearing on the issue of whether the Euler equations develop a singularity in a finite time. Some of the literature on this topic is reviewed, which includes both the Beale–Kato–Majda theorem and associated work on the direction of vorticity by Constantin, Fefferman, and Majda and by Deng, Hou, and Yu. It is then shown how the quaternion formalism provides an alternative formulation in terms of the Hessian of the pressure.
Received: 27.09.2006
Russian version:
Uspekhi Matematicheskikh Nauk, 2007, Volume 62, Issue 3(375), Pages 47–72
DOI: https://doi.org/10.4213/rm6760
Bibliographic databases:
Document Type: Article
UDC: 517.958+531.3-322
MSC: Primary 35Q35; Secondary 35B40, 35L60, 35Q30, 46N20, 76B03, 76B47, 76D05, 7
Language: English
Original paper language: Russian
Citation: J. Gibbon, “Orthonormal quaternion frames, Lagrangian evolution equations, and the three-dimensional Euler equations”, Uspekhi Mat. Nauk, 62:3(375) (2007), 47–72; Russian Math. Surveys, 62:3 (2007), 535–560
Citation in format AMSBIB
\Bibitem{Gib07}
\by J.~Gibbon
\paper Orthonormal quaternion frames, Lagrangian evolution equations, and the three-dimensional Euler equations
\jour Uspekhi Mat. Nauk
\yr 2007
\vol 62
\issue 3(375)
\pages 47--72
\mathnet{http://mi.mathnet.ru/rm6760}
\crossref{https://doi.org/10.4213/rm6760}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2355418}
\zmath{https://zbmath.org/?q=an:05295357}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007RuMaS..62..535G}
\elib{https://elibrary.ru/item.asp?id=25787396}
\transl
\jour Russian Math. Surveys
\yr 2007
\vol 62
\issue 3
\pages 535--560
\crossref{https://doi.org/10.1070/RM2007v062n03ABEH004411}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000250483500007}
\elib{https://elibrary.ru/item.asp?id=13847623}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35649011041}
Linking options:
  • https://www.mathnet.ru/eng/rm6760
  • https://doi.org/10.1070/RM2007v062n03ABEH004411
  • https://www.mathnet.ru/eng/rm/v62/i3/p47
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1332
    Russian version PDF:525
    English version PDF:23
    References:97
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024