Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2003, Volume 58, Issue 4, Pages 725–772
DOI: https://doi.org/10.1070/RM2003v058n04ABEH000643
(Mi rm643)
 

This article is cited in 24 scientific papers (total in 24 papers)

Constants in the asymptotics of small deviation probabilities for Gaussian processes and fields

V. R. Fatalov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: This paper presents a survey of results on computing the small deviation asymptotics for Gaussian measures, that is, the asymptotics of the probabilities
$$ \mu(\varepsilon D), \qquad \varepsilon\to0, $$
where $D$ is a bounded domain in a Banach space $(B,{\|\cdot\|})$ (for example, $D=\{x\in B:\|x\|\leqslant 1\}$) and $\mu$ a Gaussian measure on $B$.
The main attention is focused on calculating the values of constants in the exact or logarithmic asymptotics. The survey contains new numerical results; some erroneous assertions in previous papers on this topic are also noted.
The following classes of Gaussian processes and fields are studied in detail: Wiener processes and related processes, Brownian bridges, Bessel processes, vector Wiener processes, Gaussian Markov processes, Gaussian processes with stationary increments, fractional Ornstein–Uhlenbeck processes, $n$-parameter fractional Brownian motion, $n$-parameter Wiener–Chentsov fields, and the Wiener pillow. Results on small deviations are presented in diverse norms, namely, the sup-norm, Hilbert norms, $L^p$-norms, Hölder norms, Orlicz norms, and weighted sup-norms.
About 30 problems concerned with finding exact constants in asymptotic expressions for small deviations are posed.
The relation to Chung's law of the iterated logarithm is also considered, and a number of other results are presented.
Received: 27.11.2001
Bibliographic databases:
Document Type: Article
UDC: 519.21
MSC: Primary 60G15, 60B11; Secondary 60J65, 60J25, 60F10, 60F15, 28C20, 46T12
Language: English
Original paper language: Russian
Citation: V. R. Fatalov, “Constants in the asymptotics of small deviation probabilities for Gaussian processes and fields”, Russian Math. Surveys, 58:4 (2003), 725–772
Citation in format AMSBIB
\Bibitem{Fat03}
\by V.~R.~Fatalov
\paper Constants in the asymptotics of small deviation probabilities for Gaussian processes and fields
\jour Russian Math. Surveys
\yr 2003
\vol 58
\issue 4
\pages 725--772
\mathnet{http://mi.mathnet.ru//eng/rm643}
\crossref{https://doi.org/10.1070/RM2003v058n04ABEH000643}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2042263}
\zmath{https://zbmath.org/?q=an:1052.60026}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2003RuMaS..58..725F}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000187030700003}
\elib{https://elibrary.ru/item.asp?id=14516647}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0346897966}
Linking options:
  • https://www.mathnet.ru/eng/rm643
  • https://doi.org/10.1070/RM2003v058n04ABEH000643
  • https://www.mathnet.ru/eng/rm/v58/i4/p89
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:810
    Russian version PDF:209
    English version PDF:57
    References:97
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024