Loading [MathJax]/jax/output/CommonHTML/jax.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2003, Volume 58, Issue 2, Pages 287–318
DOI: https://doi.org/10.1070/RM2003v058n02ABEH000611
(Mi rm611)
 

This article is cited in 38 scientific papers (total in 38 papers)

Global solubility of the three-dimensional Navier–Stokes equations with uniformly large initial vorticity

A. S. Makhalov, V. P. Nikolaenko

Arizona State University
References:
Abstract: This paper is a survey of results concerning the three-dimensional Navier–Stokes and Euler equations with initial data characterized by uniformly large vorticity. The existence of regular solutions of the three-dimensional Navier–Stokes equations on an unbounded time interval is proved for large initial data both in R3 and in bounded cylindrical domains. Moreover, the existence of smooth solutions on large finite time intervals is established for the three-dimensional Euler equations. These results are obtained without additional assumptions on the behaviour of solutions for t>0. Any smooth solution is not close to any two-dimensional manifold. Our approach is based on the computation of singular limits of rapidly oscillating operators, non-linear averaging, and a consideration of the mutual absorption of non-linear oscillations of the vorticity field. The use of resonance conditions, methods from the theory of small divisors, and non-linear averaging of almost periodic functions leads to the limit resonant Navier–Stokes equations. Global solubility of these equations is proved without any conditions on the three-dimensional initial data. The global regularity of weak solutions of three-dimensional Navier–Stokes equations with uniformly large vorticity at t=0 is proved by using the regularity of weak solutions and the strong convergence.
Received: 15.02.2003
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: Primary 35Q30, 35A05; Secondary 35B65, 35B34, 35D10, 76D05, 76D06
Language: English
Original paper language: Russian
Citation: A. S. Makhalov, V. P. Nikolaenko, “Global solubility of the three-dimensional Navier–Stokes equations with uniformly large initial vorticity”, Russian Math. Surveys, 58:2 (2003), 287–318
Citation in format AMSBIB
\Bibitem{MakNik03}
\by A.~S.~Makhalov, V.~P.~Nikolaenko
\paper Global solubility of the three-dimensional Navier--Stokes equations with uniformly large initial vorticity
\jour Russian Math. Surveys
\yr 2003
\vol 58
\issue 2
\pages 287--318
\mathnet{http://mi.mathnet.ru/eng/rm611}
\crossref{https://doi.org/10.1070/RM2003v058n02ABEH000611}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992565}
\zmath{https://zbmath.org/?q=an:1059.35099}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2003RuMaS..58..287M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000184540100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0041653250}
Linking options:
  • https://www.mathnet.ru/eng/rm611
  • https://doi.org/10.1070/RM2003v058n02ABEH000611
  • https://www.mathnet.ru/eng/rm/v58/i2/p79
  • This publication is cited in the following 38 articles:
    1. Li R., “Smooth Solution For Incompressible Navier-Stokes Equations With Large Initial”, Appl. Anal., 2022  crossref  isi  scopus
    2. Vicente Gutierrez-Santacreu J., “Two Scenarios on a Potential Smoothness Breakdown For the Three-Dimensional Navier-Stokes Equations”, Discret. Contin. Dyn. Syst., 40:5 (2020), 2593–2613  crossref  mathscinet  isi
    3. Wang K., Xiao Ya., “Local Well-Posedness For Navier-Stokes Equations With a Class of Ill-Prepared Initial Data”, Discret. Contin. Dyn. Syst., 40:5 (2020), 2987–3011  crossref  mathscinet  isi
    4. Cyranka J., Mucha P.B., Titi E.S., Zgliczynski P., “Stabilizing the Long-Time Behavior of the Forced Navier–Stokes and Damped Euler Systems By Large Mean Flow”, Physica D, 369 (2018), 18–29  crossref  mathscinet  isi
    5. Han B., Chen Yu., “Global Regularity to the Navier–Stokes Equations For a Class of Large Initial Data”, Math. Model. Anal., 23:2 (2018), 262–286  crossref  mathscinet  isi  scopus
    6. Matthias Hieber, Jürgen Saal, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2018, 117  crossref
    7. de Almeida M.F., Ferreira L.C.F., Lima L.S.M., “Uniform Global Well-Posedness of the Navier–Stokes-Coriolis System in a New Critical Space”, Math. Z., 287:3-4 (2017), 735–750  crossref  mathscinet  zmath  isi
    8. Rautmann R., “Decomposition of the homogeneous space ^{1,2} with respect to the Dirichlet form ∇,∇ and applications”, Recent Advances in Partial Differential Equations and Applications, Contemporary Mathematics, 666, eds. Radulescu V., Sequeira A., Solonnikov V., Amer Mathematical Soc, 2016, 279–288  crossref  mathscinet  zmath  isi
    9. Matthias Hieber, Jürgen Saal, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2016, 1  crossref
    10. Isabelle Gallagher, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2016, 1  crossref
    11. Giga Y., Saal J., “Uniform Exponential Stability of the Ekman Spiral”, Ark. Mat., 53:1 (2015), 105–126  crossref  mathscinet  zmath  isi
    12. R. S. Saks, “Sobstvennye funktsii operatorov rotora, gradienta divergentsii i Stoksa. Prilozheniya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2(31) (2013), 131–146  mathnet  crossref  elib
    13. M.F.ernandes de Almeida, L.C..F. Ferreira, “On the local solvability in Morrey spaces of the Navier–Stokes equations in a rotating frame”, Journal of Mathematical Analysis and Applications, 2013  crossref  mathscinet  isi
    14. Petr Kučera, Jiří Neustupa, “On -stability of strong solutions of the Navier–Stokes equations with the Navier-type boundary conditions”, Journal of Mathematical Analysis and Applications, 2013  crossref  mathscinet  isi  scopus
    15. R. S. Saks, “Solving of spectral problems for curl and Stokes operators”, Ufa Math. J., 5:2 (2013), 63–81  mathnet  crossref  mathscinet  elib
    16. Reinhard Racke, Jürgen Saal, “Hyperbolic Navier–Stokes equations II: Global existence of small solutions”, EECT, 1:1 (2012), 217  crossref  mathscinet  zmath  isi  scopus
    17. Yoshikazu Giga, Jürgen Saal, “An Approach to Rotating Boundary Layers Based on Vector Radon Measures”, J. Math. Fluid Mech, 2012  crossref  mathscinet  isi
    18. Jean-Yves Chemin, Isabelle Gallagher, Marius Paicu, “Global regularity for some classes of large solutions to the Navier–Stokes equations”, Ann. Math, 173:2 (2011), 983  crossref  mathscinet  zmath  isi
    19. Marius Paicu, Zhifei Zhang, “Global regularity for the Navier–Stokes equations with some classes of large initial data”, APDE, 4:1 (2011), 95  crossref  mathscinet  isi
    20. R. S. Saks, “Cauchy problem for the Navier–Stokes equations, Fourier method”, Ufa Math. J., 3:1 (2011), 51–77  mathnet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1194
    Russian version PDF:445
    English version PDF:58
    References:126
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025