Abstract:
One of the important aims of the modem constructive theory of functions is to establish relationships between the structural properties 6i functions and sequences of approximations to them. The foundations of work in this field were laid by Jackson, Bernstein, and de la Vallée-Poussin. Subsequent developments were made by Zygmund, Kolmogorov, Nikol'skii, Pavard, and others.
Jackson' s classical inequality and the fundamental converse theorem of Bernstein-de la Vallée–Poussin, which were initially established for approximations to continuous functions by algebraic and trigonometric polynomials, have been generalized in various directions. Direct and converse theorems have been obtained for algebraic and trigonometric approximations in spaces other than C, for spaces of almost periodic functions, for approximations by eigenfunctions of a Sturm–Liouville problem, and so on.
The purpose of the present paper is to set forth the basic direct and converse theorems of the theory of approximations in Banach spaces. The main technique of the investigation is the use of strongly continuous semigroups of operators and the resolvents of operators generating these semigroups. Under certain conditions on the resolvent (see Ch. II, § 1), general direct and converse theorems are established for approximations by eigen-subspaces of a generating operator. These general theorems include as special cases many of the previously known results in the constructive theory of functions.
Citation:
N. P. Kuptsov, “Direct and converse theorems of approximation theory and semigroups of operators”, Russian Math. Surveys, 23:4 (1968), 115–177
\Bibitem{Kup68}
\by N.~P.~Kuptsov
\paper Direct and converse theorems of approximation theory and semigroups of operators
\jour Russian Math. Surveys
\yr 1968
\vol 23
\issue 4
\pages 115--177
\mathnet{http://mi.mathnet.ru/eng/rm5655}
\crossref{https://doi.org/10.1070/RM1968v023n04ABEH003773}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=234189}
\zmath{https://zbmath.org/?q=an:0159.43404|0184.16501}
Linking options:
https://www.mathnet.ru/eng/rm5655
https://doi.org/10.1070/RM1968v023n04ABEH003773
https://www.mathnet.ru/eng/rm/v23/i4/p117
This publication is cited in the following 15 articles:
Rúben Sousa, Manuel Guerra, Semyon Yakubovich, “A unified construction of product formulas and convolutions for Sturm–Liouville operators”, Anal.Math.Phys., 11:2 (2021)
S. I. Bezkryla, O. N. Nesterenko, A. V. Chaikovs'kyi, “One Inequality for the Moduli of Continuity of Fractional Order Generated by Semigroups of Operators”, Ukr Math J, 71:3 (2019), 352
A. Baskakov, I. Strukova, “Harmonic analysis of functions periodic at infinity”, Eurasian Math. J., 7:4 (2016), 9–29
I. I. Strukova, “O garmonicheskom analize periodicheskikh na beskonechnosti funktsii”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 14:1 (2014), 28–38
V. P. Sklyarov, “Ob uslovii s-regulyarnosti N. P. Kuptsova”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 13:1(2) (2013), 84–87
B. F. Ivanov, “Ob odnom obobschenii neravenstvo Bora”, Probl. anal. Issues Anal., 2(20):2 (2013), 21–58
S. A. Kreis, “Freimy i periodicheskie gruppy operatorov”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 12:2 (2012), 14–18
G. V. Radzievskii, “Characterization of Hadamard vector classes in terms of least deviations of their elements from vectors of finite degree”, Sb. Math., 192:12 (2001), 1829–1876
P. K. Suetin, B. I. Golubov, A. F. Leont'ev, M. I. Voǐtsekhovskiǐ, S. A. Aǐvazyan, A. Shtern, L. V. Kuz'min, A. A. Sapozhenko, K. A. Borovkov, M. S. Nikulin, V. P. Maslov, P. S. Modenov, A. I. Shtern, A. G. Dragalin, Vik. S. Kulikov, V. I. Nechaev, E. P. Dolzhenko, E. D. Solomentsev, T. P. Lukashenko, Yu. N. Subbotin, L. D. Ivanov, A. V. Arkhangel'skiǐ, V. I. Ponomarev, E. B. Vinberg, S. A. Telyakovskiǐ, I. I. Volkov, S. N. Smirnov, A. V. Tolstikov, S. A. Stepanov, V. M. Babich, D. D. Sokolov, L. D. Kudryavtsev, D. N. Zubarev, I. V. Proskuryakov, R. A. Minlos, Yu. P. Ivanilov, V. V. Okhrimenko, N. N. Vorob'ev, B. A. Pasynkov, M. Sh. Tsalenko, A. D. Kuz'min, B. L. Laptev, V. S. Malakhovskiǐ, V. I. Malykhin, T. S. Fofanova, A. L. Onishchik, V. E. Plisko, V. N. Latyshev, A. I. Kostrikin, I. V. Dolgachev, Yu. I. Yanov, Yu. I. Merzlyakov, O. A. Ivanova, A. N. Parshin, S. N. Artemov, G. S. Asanov, A. D. Aleksandrov, V. N. Berestovsk, Encyclopaedia of Mathematics, 1995, 549
I. A. Vinogradova, A. G. El'kin, Yu. V. Prokhorov, B. A. Efimov, L. P. Kuptsov, N. Kh. Rozov, V. A. Oskolkov, L. D. Kudryavtsev, B. V. Khvedelidze, A. A. Zakharov, M. Sh. Tsalenko, E. D. Solomentsev, Yu. L. Ershov, I. V. Dolgachev, B. B. Venkov, A. N. Parshin, A. I. Kostrikin, A. B. Ivanov, A. P. Terekhin, V. F. Emelyanov, V. V. Sazonov, M. I. Voǐtsekhovskiǐ, I. I. Volkov, P. S. Aleksandrov, A. V. Prokhorov, A. M. Zubkov, V. N. Grishin, A. A. Danilevich, N. M. Nagornyǐ, E. G. D'yakonov, Kh. D. Ikramov, N. S. Bakhvalov, A. V. Arkhangel'skiǐ, V. V. Rumyantsev, A. V. Zarelua, A. A. Mal'tsev, O. A. Ivanova, V. P. Fedotov, I. P. Kubilyus, B. M. Bredikhin, P. L. Dobrushin, V. V. Prelov, A. V. Mikhalev, V. A. Andrunakievich, V. V. Fedorchuk, V. P. Platonov, A. P. Favorskiǐ, D. V. Anosov, V. I. Danilov, E. L. Tonkov, A. L. Onishchik, T. S. Pigolkina, T. S. Pogolkina, L. A. Skornyakov, V. I. Sobolev, I. Kh. Sabitov, V. I. Lebedev, A. V. Lykov, A., Encyclopaedia of Mathematics, 1995, 1
A. G. Baskakov, “Spectral analysis of perturbed nonquasianalytic and spectral operators”, Russian Acad. Sci. Izv. Math., 45:1 (1995), 1–31
M. Hazewinkel, Encyclopaedia of Mathematics, 1988, 1
A. P. Terekhin, “A multiparameter semigroup of operators, mixed moduli and aproximation”, Math. USSR-Izv., 9:4 (1975), 887–910
K. K. Golovkin, “Uniform equivalence of parametric norms in ergodic and approximation theories”, Math. USSR-Izv., 5:4 (1971), 915–934