Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1968, Volume 23, Issue 1, Pages 93–135
DOI: https://doi.org/10.1070/RM1968v023n01ABEH001234
(Mi rm5593)
 

This article is cited in 19 scientific papers (total in 19 papers)

Best linear approximations of functions analytically continuable from a given continuum into a given region

V. D. Erokhin
References:
Abstract: Let $K$ be a continuum (other than a single point) in the $z$-plane not disconnecting the plane, $\mathfrak{G}$ a simply-connected domain containing $K$. The class $A_K^{\mathfrak{G}}$ consists of those functions that are analytic in $\mathfrak{G}$ and satisfy the inequality
$$ |f(z)|\leqslant 1,\quad\mathbf\forall_z\in\mathfrak{G}. $$
The author proves the following theorem:
$$ H_\varepsilon(A_K^\mathfrak{G})\sim\tau\log_2^2\frac{1}{\varepsilon},\qquad\lim_{n\to\infty}d_n(A_K^\mathfrak{G})]^{\frac{1}{n}}=2^{-\frac{1}{\tau}}. $$
Here $H_\varepsilon$ is the $\varepsilon$-etropy of $A_K^{\mathfrak{G}}$, and $d_n$ the $n$-dimensional linear diameter of $ A_K^{\mathfrak{G}}$ in the space $ C(K)$ of all functions continuous on $K$. The norm on $ A_K^{\mathfrak{G}}$ is
$$ ||f(z)||=\max_{z\in K}|f(z)|. $$
For the proof a basis is constructed in the space $\mathscr H(\mathfrak{G})$ of functions holomorphic in $\mathfrak{G}$; it coincides with the Faber basis if $\partial\mathfrak{G}$ is a level curve of $K$. A fundamental part in this construction is played by a lemma which states that the domain $\mathfrak{G}\setminus K$ can be mapped conformally into a domain $\mathfrak{G}'\setminus K'$, where $\partial\mathfrak{G}'$ is a level curve of $K'$. In the appendix, which is written by A. L. Levin and V. M. Tikhomirov, a similar theorem is proved (under additional assumptions) for the case when $\mathfrak{G}$ is multiply-connected and $K$ may consist of several continua.
Received: 08.08.1967
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: English
Original paper language: Russian
Citation: V. D. Erokhin, “Best linear approximations of functions analytically continuable from a given continuum into a given region”, Russian Math. Surveys, 23:1 (1968), 93–135
Citation in format AMSBIB
\Bibitem{Ero68}
\by V.~D.~Erokhin
\paper Best linear approximations of functions analytically continuable from a~given continuum into a~given region
\jour Russian Math. Surveys
\yr 1968
\vol 23
\issue 1
\pages 93--135
\mathnet{http://mi.mathnet.ru//eng/rm5593}
\crossref{https://doi.org/10.1070/RM1968v023n01ABEH001234}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=227427}
\zmath{https://zbmath.org/?q=an:0184.10001|0188.38001}
Linking options:
  • https://www.mathnet.ru/eng/rm5593
  • https://doi.org/10.1070/RM1968v023n01ABEH001234
  • https://www.mathnet.ru/eng/rm/v23/i1/p91
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024