Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2002, Volume 57, Issue 5, Pages 847–920
DOI: https://doi.org/10.1070/RM2002v057n05ABEH000552
(Mi rm552)
 

This article is cited in 57 scientific papers (total in 57 papers)

Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains

M. S. Agranovich

Moscow State Institute of Electronics and Mathematics
References:
Abstract: Spectral boundary-value problems with discrete spectrum are considered for second-order strongly elliptic systems of partial differential equations in a domain $\Omega\subset\mathbb R^n$ whose boundary $\Gamma$ is compact and may be $C^\infty$, $C^{1,1}$, or Lipschitz. The principal part of the system is assumed to be Hermitian and to satisfy an additional condition ensuring that the Neumann problem is coercive. The spectral parameter occurs either in the system (then $\Omega$ is assumed to be bounded) or in a first-order boundary condition. Also considered are transmission problems in $\mathbb R^n\setminus\Gamma$ with spectral parameter in the transmission condition on $\Gamma$. The corresponding operators in $L_2(\Omega)$ or $L_2(\Gamma)$ are self-adjoint operators or weak perturbations of self-adjoint ones. Under some additional conditions a discussion is given of the smoothness, completeness, and basis properties of eigenfunctions or root functions in the Sobolev $L_2$-spaces $H^t(\Omega)$ or $H^t(\Gamma)$ of non-zero order $t$ as well as of localization and the asymptotic behaviour of the eigenvalues. The case of Coulomb singularities in the zero-order term of the system is also covered.
Received: 17.04.2002
Bibliographic databases:
Document Type: Article
UDC: 517.98
MSC: Primary 35J25, 35J55; Secondary 35J20, 35J50, 35P99, 35J05
Language: English
Original paper language: Russian
Citation: M. S. Agranovich, “Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains”, Russian Math. Surveys, 57:5 (2002), 847–920
Citation in format AMSBIB
\Bibitem{Agr02}
\by M.~S.~Agranovich
\paper Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains
\jour Russian Math. Surveys
\yr 2002
\vol 57
\issue 5
\pages 847--920
\mathnet{http://mi.mathnet.ru//eng/rm552}
\crossref{https://doi.org/10.1070/RM2002v057n05ABEH000552}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992082}
\zmath{https://zbmath.org/?q=an:1057.35019}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2002RuMaS..57..847A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180936400001}
\elib{https://elibrary.ru/item.asp?id=14128847}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036771185}
Linking options:
  • https://www.mathnet.ru/eng/rm552
  • https://doi.org/10.1070/RM2002v057n05ABEH000552
  • https://www.mathnet.ru/eng/rm/v57/i5/p3
  • This publication is cited in the following 57 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025