Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2002, Volume 57, Issue 5, Pages 921–979
DOI: https://doi.org/10.1070/RM2002v057n05ABEH000553
(Mi rm553)
 

This article is cited in 34 scientific papers (total in 34 papers)

On classification of Lorentzian Kac–Moody algebras

V. A. Gritsenkoab, V. V. Nikulincd

a University of Sciences and Technologies
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
c Steklov Mathematical Institute, Russian Academy of Sciences
d University of Liverpool
References:
Abstract: The general theory of Lorentzian Kac–Moody algebras is considered. This theory must serve as a hyperbolic analogue of the classical theories of finite-dimensional semisimple Lie algebras and affine Kac–Moody algebras. The first examples of Lorentzian Kac–Moody algebras were found by Borcherds. Here general finiteness results for the set of Lorentzian Kac–Moody algebras of rank $\geqslant 3$ are considered along with the classification problem for these algebras. As an example, a classification is given for Lorentzian Kac–Moody algebras of rank 3 with hyperbolic root lattice $S_t^*$, symmetry lattice $L_t^*$, and symmetry group $\widehat O^+(L_t)$, $t\in\mathbb N$, where $S_t$ and $L_t$ are given by
\begin{gather*} S_t=H\oplus\langle 2t\rangle=\left(\begin{smallmatrix}0&0&-1\\0&2t&0\\-1&0&0\end{smallmatrix}\right), \quad L_t=H\oplus S_t=\left(\begin{smallmatrix}0&0&0&0&-1\\0&0&0&-1&0\\0&0&2t&0&0\\0&-1&0&0&0\\-1&0&0&0&0\end{smallmatrix}\right), \\ H=\left(\begin{smallmatrix}0&-1\\-1&0\end{smallmatrix}\right), \quad \end{gather*}
and $\widehat O^+(L_t)=\{g\in O^+(L_t)\mid g$ is trivial on $L_t^*/L_t\}$, is the extended paramodular group. This is perhaps the first example in which a large class of Lorentzian Kac–Moody algebras has been classified.
Received: 17.01.2002
Bibliographic databases:
Document Type: Article
UDC: 512.818.4+512.817.72+511.334+512.774
MSC: Primary 17B67; Secondary 11F22, 11F50, 14J15, 14J28, 81R10
Language: English
Original paper language: Russian
Citation: V. A. Gritsenko, V. V. Nikulin, “On classification of Lorentzian Kac–Moody algebras”, Russian Math. Surveys, 57:5 (2002), 921–979
Citation in format AMSBIB
\Bibitem{GriNik02}
\by V.~A.~Gritsenko, V.~V.~Nikulin
\paper On classification of Lorentzian Kac--Moody algebras
\jour Russian Math. Surveys
\yr 2002
\vol 57
\issue 5
\pages 921--979
\mathnet{http://mi.mathnet.ru//eng/rm553}
\crossref{https://doi.org/10.1070/RM2002v057n05ABEH000553}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992083}
\zmath{https://zbmath.org/?q=an:1057.17018}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2002RuMaS..57..921G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180936400002}
\elib{https://elibrary.ru/item.asp?id=13405363}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036771187}
Linking options:
  • https://www.mathnet.ru/eng/rm553
  • https://doi.org/10.1070/RM2002v057n05ABEH000553
  • https://www.mathnet.ru/eng/rm/v57/i5/p79
  • Related presentations:
    This publication is cited in the following 34 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:852
    Russian version PDF:344
    English version PDF:33
    References:98
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024