Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1970, Volume 25, Issue 6, Pages 51–82
DOI: https://doi.org/10.1070/RM1970v025n06ABEH001268
(Mi rm5427)
 

This article is cited in 4 scientific papers (total in 4 papers)

Problems of value distribution in dimensions higher than unity

I. M. Dektyarev
References:
Abstract: Consider two $n$-dimensional complex manifolds $X$ and $M$, where $M$ is assumed to be compact. Suppose that on $M$ a form $\omega$ is give, which defines an element of volume, and on $X$ a function $\tau$ with isolated critical points and such that the domain $X_r=\{x:\tau(x)<r\}$ is relatively compact for all $r$. For each point we construct on $M\setminus a$ a form $\lambda_a$ of bidegree $(n-1, n-1)$ with certain special properties which allow us to use a more or less standard techniques to prove the following “first main theorem”: if a holomorphic map $f:X\to M$ is non-degenerate for at least one point, then
$$ T(r)=N(r, a)+\int_{\partial X_r}d^c\tau \wedge f^*\lambda_a -\int_{X_r}f^*\lambda_a \wedge dd^c\tau, $$
where $T(r)$ denotes the integral $\displaystyle\int_0^r\biggl (\int_{X_t}f^*\omega\biggr)\,dt$, and $N(r, a)$ the integral $\displaystyle\int_0^r n(X_t,a)\,dt$; here $n(X_t, a)$ is the number of points (including multiplicities) $x\in X_t$ such that $f(x)=a$. Under various conditions on the exhaustion $\tau$ and the mapping $f$ we obtain various theorems which assert that when these conditions hold, then the quantity grows for almost all $a\in M$ (over some subsequence of numbers $r$) at the same rate as $T(t)$.
We also consider the case of real manifolds and smooth maps. Here we obtain analogous results, though by different methods.
Received: 12.12.1969
Bibliographic databases:
Document Type: Article
UDC: 519.9
MSC: 34M45, 32Q15, 32Q40
Language: English
Original paper language: Russian
Citation: I. M. Dektyarev, “Problems of value distribution in dimensions higher than unity”, Russian Math. Surveys, 25:6 (1970), 51–82
Citation in format AMSBIB
\Bibitem{Dek70}
\by I.~M.~Dektyarev
\paper Problems of value distribution in dimensions higher than unity
\jour Russian Math. Surveys
\yr 1970
\vol 25
\issue 6
\pages 51--82
\mathnet{http://mi.mathnet.ru//eng/rm5427}
\crossref{https://doi.org/10.1070/RM1970v025n06ABEH001268}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=316753}
\zmath{https://zbmath.org/?q=an:0207.37803|0223.32007}
Linking options:
  • https://www.mathnet.ru/eng/rm5427
  • https://doi.org/10.1070/RM1970v025n06ABEH001268
  • https://www.mathnet.ru/eng/rm/v25/i6/p53
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:349
    Russian version PDF:102
    English version PDF:16
    References:49
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024