Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2002, Volume 57, Issue 4, Pages 729–751
DOI: https://doi.org/10.1070/RM2002v057n04ABEH000535
(Mi rm535)
 

This article is cited in 21 scientific papers (total in 21 papers)

Homogenization of a random non-stationary convection-diffusion problem

M. L. Kleptsynaa, A. L. Piatnitskib

a Institute for Information Transmission Problems, Russian Academy of Sciences
b P. N. Lebedev Physical Institute, Russian Academy of Sciences
References:
Abstract: The homogenization problem is studied for a non-stationary convection-diffusion equation with rapidly oscillating coefficients periodic in the spatial variables and stationary random in the time. Under the assumption that the coefficients of the equation have rather good mixing properties, it is shown that, in properly chosen moving coordinates, the distribution of the solution of the original problem converges to the solution of the limit stochastic partial differential equation. The homogenized problem is well-posed and determines the limit measure uniquely.
Received: 05.04.2002
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: Primary 35B27, 35R60, 35B40; Secondary 60J60, 37A25, 60H15
Language: English
Original paper language: Russian
Citation: M. L. Kleptsyna, A. L. Piatnitski, “Homogenization of a random non-stationary convection-diffusion problem”, Russian Math. Surveys, 57:4 (2002), 729–751
Citation in format AMSBIB
\Bibitem{KlePia02}
\by M.~L.~Kleptsyna, A.~L.~Piatnitski
\paper Homogenization of a~random non-stationary convection-diffusion problem
\jour Russian Math. Surveys
\yr 2002
\vol 57
\issue 4
\pages 729--751
\mathnet{http://mi.mathnet.ru/eng/rm535}
\crossref{https://doi.org/10.1070/RM2002v057n04ABEH000535}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1942118}
\zmath{https://zbmath.org/?q=an:1073.35023}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2002RuMaS..57..729K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000179830900004}
\elib{https://elibrary.ru/item.asp?id=13397369}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036664160}
Linking options:
  • https://www.mathnet.ru/eng/rm535
  • https://doi.org/10.1070/RM2002v057n04ABEH000535
  • https://www.mathnet.ru/eng/rm/v57/i4/p95
  • This publication is cited in the following 21 articles:
    1. A. Piatnitski, E. Zhizhina, “Homogenization of non-autonomous evolution problems for convolution type operators in randomly evolving media”, Journal de Mathématiques Pures et Appliquées, 194 (2025), 103660  crossref
    2. Marina Kleptsyna, Andrey Piatnitski, Alexandre Popier, “Higher order homogenization for random non-autonomous parabolic operators”, Stoch PDE: Anal Comp, 2024  crossref
    3. Alexander N. Vlasov, D. A. Vlasov, G. S. Sorokin, Yulia N. Karnet, “EFFECTIVE STIFFNESS TENSOR OF COMPOSITE MATERIALS WITH INCLUSIONS OF RANDOM SIZE AND PERIODIC LOCATION OF THEIR CENTERS”, Comp Mech Comput Appl Int J, 15:4 (2024), 63  crossref
    4. Dong Su, Xuan Yang, “Homogenization for a Class Stochastic Partial Differential Equations With Nonperiodic Coefficients”, Math Methods in App Sciences, 2024  crossref
    5. El Jarroudi M., Lahrouz A., Settati A., “Asymptotic Behavior of a Random Oscillating Nonlinear Reactive Transport in Thin Turbulent Layers”, Math. Meth. Appl. Sci., 44:18 (2021), 14849–14873  crossref  mathscinet  isi
    6. S. A. Kashchenko, D. O. Loginov, “Andronov–Hopf Bifurcation in Logistic Delay Equations with Diffusion and Rapidly Oscillating Coefficients”, Math. Notes, 108:1 (2020), 50–63  mathnet  crossref  crossref  mathscinet
    7. S. A. Kashchenko, D. O. Loginov, “Andronov–Hopf Bifurcation in Logistic Delay Equations with Diffusion and Rapidly Oscillating Coefficients”, Math Notes, 108:1-2 (2020), 50  crossref
    8. El Jarroudi M., Hajjami R., Lahrouz A., El Jarroudi M., “A Lubricant Boundary Condition For a Biological Body Lined By a Thin Heterogeneous Biofilm”, Int. J. Biomath., 12:1 (2019), 1950003  crossref  mathscinet  zmath  isi  scopus
    9. El Jarroudi M., “A Mathematical Model For Turbulent Transport Through Thin Randomly Oscillating Layers Surrounding a Fixed Domain”, Physica A, 520 (2019), 178–195  crossref  mathscinet  isi  scopus
    10. S. A. Kashchenko, “Homogenization over the spatial variable in nonlinear parabolic systems”, Trans. Moscow Math. Soc., 80 (2019), 53–71  mathnet  crossref  elib
    11. Kashchenko S.A., “Dynamics of a Delay Logistic Equation With Diffusion and Coefficients Rapidly Oscillating in Space Variable”, Dokl. Math., 98:2 (2018), 522–525  crossref  mathscinet  zmath  isi  scopus
    12. V. V. Zhikov, S. E. Pastukhova, “Operator estimates in homogenization theory”, Russian Math. Surveys, 71:3 (2016), 417–511  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. Mohammed M., Sango M., “Homogenization of Neumann problem for hyperbolic stochastic partial differential equations in perforated domains”, Asymptotic Anal., 97:3-4 (2016), 301–327  crossref  mathscinet  zmath  isi  elib  scopus
    14. Mohammed M., Sango M., “Homogenization of Linear Hyperbolic Stochastic Partial Differential Equation With Rapidly Oscillating Coefficients: the Two Scale Convergence Method”, Asymptotic Anal., 91:3-4 (2015), 341–371  crossref  mathscinet  zmath  isi  scopus  scopus
    15. M. Kleptsyna, A. Piatnitski, A. Popier, “Homogenization of random parabolic operators. Diffusion approximation”, Stochastic Processes and their Applications, 2014  crossref  mathscinet  isi  scopus  scopus
    16. Effective Dynamics of Stochastic Partial Differential Equations, 2014, 257  crossref
    17. Wei Wang, Daomin Cao, Jinqiao Duan, “Effective Macroscopic Dynamics of Stochastic Partial Differential Equations in Perforated Domains”, SIAM J Math Anal, 38:5 (2007), 1508  crossref  mathscinet  zmath  isi  scopus  scopus
    18. Wei Wang, Jinqiao Duan, “Homogenized Dynamics of Stochastic Partial Differential Equations with Dynamical Boundary Conditions”, Comm Math Phys, 275:1 (2007), 163  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    19. Amaziane B., Goncharenko M., Pankratov L., “Homogenization of a convection-diffusion equation in perforated domains with a weak adsorption”, Z. Angew. Math. Phys., 58:4 (2007), 592–611  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    20. Diop M.A., Iftimie B., Pardoux E., Piatnitski A.L., “Singular homogenization with stationary in time and periodic in space coefficients”, J. Funct. Anal., 231:1 (2006), 1–46  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:840
    Russian version PDF:261
    English version PDF:30
    References:114
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025