Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1970, Volume 25, Issue 2, Pages 191–220
DOI: https://doi.org/10.1070/RM1970v025n02ABEH003793
(Mi rm5323)
 

This article is cited in 22 scientific papers (total in 22 papers)

Metric properties of measure preserving homeomorphisms

A. B. Katok, A. M. Stepin
References:
Abstract: We study “typical” metric (ergodic) properties of measure preserving homeomorphisms of regularly connected cellular polyhedra and of some other spaces. In 1941 Oxtoby and Ulam proved (for a narrower class of spaces) that ergodicity is such a property. Using a modification of their construction and the method of approximating metric automorphisms by periodic ones, we prove in this paper that almost all properties that are “typical' for the metric automorphisms of the Lebesgue spaces are also "typical” for the situation under discussion.
Received: 09.12.1969
Bibliographic databases:
Document Type: Article
UDC: 513.83
MSC: 28D05, 28D15, 28D20
Language: English
Original paper language: Russian
Citation: A. B. Katok, A. M. Stepin, “Metric properties of measure preserving homeomorphisms”, Russian Math. Surveys, 25:2 (1970), 191–220
Citation in format AMSBIB
\Bibitem{KatSte70}
\by A.~B.~Katok, A.~M.~Stepin
\paper Metric properties of measure preserving homeomorphisms
\jour Russian Math. Surveys
\yr 1970
\vol 25
\issue 2
\pages 191--220
\mathnet{http://mi.mathnet.ru/eng/rm5323}
\crossref{https://doi.org/10.1070/RM1970v025n02ABEH003793}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=260974}
\zmath{https://zbmath.org/?q=an:0198.55701|0209.27803}
Linking options:
  • https://www.mathnet.ru/eng/rm5323
  • https://doi.org/10.1070/RM1970v025n02ABEH003793
  • https://www.mathnet.ru/eng/rm/v25/i2/p193
  • This publication is cited in the following 22 articles:
    1. Jozef Bobok, Jernej Činč, Piotr Oprocha, Serge Troubetzkoy, “Continuous Lebesgue measure-preserving maps on one-dimensional manifolds: A survey”, Topology and its Applications, 2024, 109101  crossref
    2. Gabriel Lacerda, Sergio Romaña, “Typical Conservative Homeomorphisms Have Total Metric Mean Dimension”, IEEE Trans. Inform. Theory, 70:11 (2024), 7664  crossref
    3. Stefano Bianchini, Martina Zizza, “Properties of Mixing BV Vector Fields”, Commun. Math. Phys., 402:2 (2023), 1953  crossref
    4. Aldo Filomeno, Synthese Library, 477, Current Debates in Philosophy of Science, 2023, 391  crossref
    5. V. V. Ryzhikov, “Compact families and typical entropy invariants of measure-preserving actions”, Trans. Moscow Math. Soc., 82 (2021), 117–123  mathnet  crossref
    6. Marlies Gerber, Philipp Kunde, “A smooth zero-entropy diffeomorphism whose product with itself is loosely Bernoulli”, JAMA, 141:2 (2020), 521  crossref
    7. Schnurr M., “Generic Properties of Extensions”, Ergod. Theory Dyn. Syst., 39:11 (2019), PII S0143385717001456, 3144–3168  crossref  isi
    8. Philipp Kunde, “Smooth diffeomorphisms with homogeneous spectrum and disjointness of convolutions”, JMD, 10:02 (2016), 439  crossref
    9. PIERRE-ANTOINE GUIHÉNEUF, “Dynamical properties of spatial discretizations of a generic homeomorphism”, Ergod. Th. Dynam. Sys, 2014, 1  crossref
    10. V. V. Ryzhikov, “Spectral multiplicities and asymptotic operator properties of actions with invariant measure”, Sb. Math., 200:12 (2009), 1833–1845  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    11. V. V. Ryzhikov, “Weak limits of powers, simple spectrum of symmetric products, and rank-one mixing constructions”, Sb. Math., 198:5 (2007), 733–754  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    12. Anatole Katok, Jean-Paul Thouvenot, Handbook of Dynamical Systems, 1, 2006, 649  crossref
    13. J.N. Qiang, S.W. Zhong, “Clarifications on the Integration Path of Transient Energy Function”, IEEE Trans Power Syst, 20:2 (2005), 883  crossref  isi
    14. Bezuglyi S., Kwiatkowski J., Medynets K., “Approximation in Ergodic Theory, Borel, and Cantor Dynamics”, Algebraic and Topological Dynamics, Contemporary Mathematics Series, 385, eds. Kolyada S., Manin Y., Ward T., Amer Mathematical Soc, 2005, 39–64  isi
    15. Alpern S. Prasad V., “Properties Generic for Lebesgue Space Automorphisms Are Generic for Measure-Preserving Manifold Homeomorphisms”, Ergod. Theory Dyn. Syst., 22:Part 6 (2002), 1587–1620  crossref  isi
    16. V. I. Bogachev, “Measures on topological spaces”, Journal of Mathematical Sciences (New York), 91:4 (1998), 3033  crossref  mathscinet  zmath
    17. G. R. Goodson, V. V. Ryzhikov, “Conjugations, joinings, and direct products of locally rank one dynamical systems”, J Dyn Control Syst, 3:3 (1997), 321  crossref  mathscinet  zmath
    18. I. A. Vinogradova, A. G. El'kin, Yu. V. Prokhorov, B. A. Efimov, L. P. Kuptsov, N. Kh. Rozov, V. A. Oskolkov, L. D. Kudryavtsev, B. V. Khvedelidze, A. A. Zakharov, M. Sh. Tsalenko, E. D. Solomentsev, Yu. L. Ershov, I. V. Dolgachev, B. B. Venkov, A. N. Parshin, A. I. Kostrikin, A. B. Ivanov, A. P. Terekhin, V. F. Emelyanov, V. V. Sazonov, M. I. Voǐtsekhovskiǐ, I. I. Volkov, P. S. Aleksandrov, A. V. Prokhorov, A. M. Zubkov, V. N. Grishin, A. A. Danilevich, N. M. Nagornyǐ, E. G. D'yakonov, Kh. D. Ikramov, N. S. Bakhvalov, A. V. Arkhangel'skiǐ, V. V. Rumyantsev, A. V. Zarelua, A. A. Mal'tsev, O. A. Ivanova, V. P. Fedotov, I. P. Kubilyus, B. M. Bredikhin, P. L. Dobrushin, V. V. Prelov, A. V. Mikhalev, V. A. Andrunakievich, V. V. Fedorchuk, V. P. Platonov, A. P. Favorskiǐ, D. V. Anosov, V. I. Danilov, E. L. Tonkov, A. L. Onishchik, T. S. Pigolkina, T. S. Pogolkina, L. A. Skornyakov, V. I. Sobolev, I. Kh. Sabitov, V. I. Lebedev, A. V. Lykov, A., Encyclopaedia of Mathematics, 1995, 1  crossref
    19. Steve Alpern, V. S. Prasad, “Dynamics induced on the ends of non-compact manifold”, Ergod Th Dynam Sys, 8:1 (1988)  crossref  mathscinet
    20. M. Hazewinkel, Encyclopaedia of Mathematics, 1988, 1  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:832
    Russian version PDF:349
    English version PDF:65
    References:127
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025