Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1971, Volume 26, Issue 4, Pages 99–164
DOI: https://doi.org/10.1070/RM1971v026n04ABEH003983
(Mi rm5229)
 

This article is cited in 26 scientific papers (total in 26 papers)

Linear problems of complex analysis

B. S. Mityagin, G. M. Henkin
References:
Abstract: This article attempts to give a linearized form of the basic theorems of complex analysis (the Oka–Cartan theory). With this aim we study simultaneously: a) the isomorphism problem for spaces of holomorphic functions $H(M)$ and $H(D^n)$, $n=\dim_{\mathbf C}M$; b) the existence of a linear separation of singularities for the space $H(U)$, where $U=U_0\cap U_1$, and $U_k$ ($k=0, 1$) are holomorphically convex domains in a complex manifold $M$, and, in a more general setting, the splitting of the Čech complex of a coherent sheaf over a holomorphically convex domain $V$; c) the existence of a linear extension for holomorphic functions on a submanifold $M\subset\Omega$, and more generally, the splitting of a global resolution of a coherent sheaf. In several cases (for strictly pseudoconvex domains) these questions can be answered affirmatively. The proofs are based on the theory of Hilbert scales and bounds for solutions of the $\bar\partial$-problem in weighted $L^2$-spaces. Counterexamples show that the same questions may also have negative answers.
Received: 22.01.1971
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: English
Original paper language: Russian
Citation: B. S. Mityagin, G. M. Henkin, “Linear problems of complex analysis”, Russian Math. Surveys, 26:4 (1971), 99–164
Citation in format AMSBIB
\Bibitem{MitHen71}
\by B.~S.~Mityagin, G.~M.~Henkin
\paper Linear problems of complex analysis
\jour Russian Math. Surveys
\yr 1971
\vol 26
\issue 4
\pages 99--164
\mathnet{http://mi.mathnet.ru//eng/rm5229}
\crossref{https://doi.org/10.1070/RM1971v026n04ABEH003983}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=287297}
\zmath{https://zbmath.org/?q=an:0245.46027}
Linking options:
  • https://www.mathnet.ru/eng/rm5229
  • https://doi.org/10.1070/RM1971v026n04ABEH003983
  • https://www.mathnet.ru/eng/rm/v26/i4/p93
  • This publication is cited in the following 26 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024