Loading [MathJax]/jax/output/SVG/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1971, Volume 26, Issue 3, Pages 117–176
DOI: https://doi.org/10.1070/RM1971v026n03ABEH003836
(Mi rm5199)
 

This article is cited in 12 scientific papers (total in 12 papers)

The method of intrinsic boundary conditions in the theory of difference boundary value problems

V. S. Ryaben'kii
References:
Abstract: In this article we consider general systems of difference equations with constant coefficients in arbitrary many-dimensional network domains. We define the boundary of a network domain in a certain way and give a formula that expresses the values of a solution at each point of the network domain in terms of its values at points of the boundary. We use this formula to derive necessary and sufficient conditions, which we call 'intrinsic boundary conditions', for a vector function given on the boundary of a network domain to be extendable everywhere in this domain to a solution. This formula allows us to appreciate that it is natural to consider a general boundary value problem for the systems in question.
The method we suggest for investigating and calculating solutions of difference boundary value problems consists in going from the original problem to the problem on the boundary that arises when we consider a combination of given and intrinsic boundary conditions. We present results obtained by the method of intrinsic boundary conditions. In the main they relate to non-stationary problems in simple and composite domains and have various degrees of effectiveness.
We refer in the paper to other methods only to appreciate the position of the new method among those already available; it interacts with them and supplements them.
Received: 30.10.1970
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Original paper language: Russian
Citation: V. S. Ryaben'kii, “The method of intrinsic boundary conditions in the theory of difference boundary value problems”, Russian Math. Surveys, 26:3 (1971), 117–176
Citation in format AMSBIB
\Bibitem{Rya71}
\by V.~S.~Ryaben'kii
\paper The method of intrinsic boundary conditions in the theory of difference boundary value problems
\jour Russian Math. Surveys
\yr 1971
\vol 26
\issue 3
\pages 117--176
\mathnet{http://mi.mathnet.ru/eng/rm5199}
\crossref{https://doi.org/10.1070/RM1971v026n03ABEH003836}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=303149}
\zmath{https://zbmath.org/?q=an:0257.35076}
Linking options:
  • https://www.mathnet.ru/eng/rm5199
  • https://doi.org/10.1070/RM1971v026n03ABEH003836
  • https://www.mathnet.ru/eng/rm/v26/i3/p105
  • This publication is cited in the following 12 articles:
    1. V. S. Ryaben'kii, V. A. Torgashov, “An Iteration-Free Approach to Solving the Navier–Stokes Equations by Implicit Finite Difference Schemes in the Vorticity-Stream Function Formulation”, J Sci Comput, 81:3 (2019), 1136  crossref
    2. V. S. Ryabenkii, “Aktivnaya zaschita akusticheskogo polya zhelatelnykh istochnikov ot vneshnego shuma v realnom vremeni”, Preprinty IPM im. M. V. Keldysha, 2016, 027, 21 pp.  mathnet
    3. V. S. Ryaben'kii, “Difference potentials analogous to Cauchy integrals”, Russian Math. Surveys, 67:3 (2012), 541–567  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. Ryabenkii V.S., “Potentsialy dlya abstraktnykh raznostnykh skhem”, Preprinty IPM im. M.V. Keldysha, 2012, no. 10, 1–30 Potentials for abstract difference schemes  elib
    5. V. S. Ryabenkii, “Potentsialy dlya abstraktnykh raznostnykh skhem”, Preprinty IPM im. M. V. Keldysha, 2012, 010, 30 pp.  mathnet
    6. A. O. Rodnikov, B. A. Samokish, “Finite difference method in the problem of diffraction of a plane acoustic wave in a half-plane with a cut”, Comput. Math. Math. Phys., 49:12 (2009), 2117–2134  mathnet  crossref  isi  elib  elib
    7. V. S. Ryaben'kii, “Difference Potentials Method and its Applications”, Math Nachr, 177:1 (1996), 251  crossref  mathscinet  isi  elib
    8. V. S. Ryaben'kiǐ, “Potentials for general linear systems of difference equations on abstract grids”, Comput. Math. Math. Phys., 36:4 (1996), 451–456  mathnet  mathscinet  zmath  isi
    9. V. S. Ryaben'kii, “Boundary equations with projections”, Russian Math. Surveys, 40:2 (1985), 147–183  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    10. D. G. Vasil'ev, “Two-term asymptotics of the spectrum of a boundary-value problem under an interior reflection of general form”, Funct. Anal. Appl., 18:4 (1984), 267–277  mathnet  crossref  mathscinet  zmath  isi
    11. I. L. Sofronov, “Nondegeneracy of the equations related to the method of difference potentials”, Funct. Anal. Appl., 18:4 (1984), 347–349  mathnet  crossref  mathscinet  zmath  isi
    12. A. V. Gulin, A. A. Samarskii, “On some results and problems of the stability theory of difference schemes”, Math. USSR-Sb., 28:3 (1976), 263–290  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:786
    Russian version PDF:1205
    English version PDF:50
    References:122
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025