Abstract:
In 1891 A. Hurwitz considered the problem of enumerating the ramified coverings of the two-dimensional sphere by two-dimensional surfaces with fixed types of branching over the branch points. In the original setting the problem was reformulated in terms of characters of the symmetric group. Recently it turned out that the problem is also very closely connected with diverse physical theories, with singularity theory, and with the geometry of the moduli spaces of complex curves. The discovery of these relationships has led to an enlargement of the class of
cases in which the enumeration yields explicit formulae, and a clarification of the nature of the classical results. This survey is devoted to a description of the contemporary state of this thriving topic and is intended for experts in topology, the theory of Riemann surfaces, combinatorics, singularity theory, and mathematical physics. It can also serve as a guide to the modern literature on coverings of the sphere.
Citation:
S. K. Lando, “Ramified coverings of the two-dimensional sphere and the intersection theory in spaces
of meromorphic functions on algebraic curves”, Russian Math. Surveys, 57:3 (2002), 463–533
\Bibitem{Lan02}
\by S.~K.~Lando
\paper Ramified coverings of the two-dimensional sphere and the intersection theory in spaces
of meromorphic functions on algebraic curves
\jour Russian Math. Surveys
\yr 2002
\vol 57
\issue 3
\pages 463--533
\mathnet{http://mi.mathnet.ru/eng/rm511}
\crossref{https://doi.org/10.1070/RM2002v057n03ABEH000511}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1918855}
\zmath{https://zbmath.org/?q=an:1054.14037}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2002RuMaS..57..463L}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178591700002}
\elib{https://elibrary.ru/item.asp?id=13400576}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036558746}
Linking options:
https://www.mathnet.ru/eng/rm511
https://doi.org/10.1070/RM2002v057n03ABEH000511
https://www.mathnet.ru/eng/rm/v57/i3/p29
This publication is cited in the following 37 articles:
Theo Douvropoulos, Joel Brewster Lewis, Alejandro H. Morales, “Hurwitz numbers for reflection groups III: Uniform formulae”, Journal of London Math Soc, 111:3 (2025)
F. G. Avkhadiev, I. R. Kayumov, S. R. Nasyrov, “Extremal problems in geometric function theory”, Russian Math. Surveys, 78:2 (2023), 211–271
Andrea Brini, Karoline van Gemst, “Mirror symmetry for extended affine Weyl groups”, Journal de l'École polytechnique — Mathématiques, 9 (2022), 907
Lima A.A., Sotkov G.M., Stanishkov M., “Correlation Functions of Composite Ramond Fields in Deformed D1-D5 Orbifold Scft2”, Phys. Rev. D, 102:10 (2020), 106004
Nasyrov S., “Families of Elliptic Functions, Realizing Coverings of the Sphere, With Branch-Points and Poles of Arbitrary Multiplicities”, Lobachevskii J. Math., 41:11, SI (2020), 2223–2230
B. S. Bychkov, “Stepeni kogomologicheskikh klassov multiosobennostei v prostranstvakh Gurvitsa ratsionalnykh funktsii”, Funkts. analiz i ego pril., 53:1 (2019), 16–30
B. S. Bychkov, “Degrees of Cohomology Classes of Multisingularities in Hurwitz Spaces of Rational Functions”, Funct Anal Its Appl, 53:1 (2019), 11
Nasyrov S., “Uniformization of Simply-Connected Ramified Coverings of the Sphere By Rational Functions”, Lobachevskii J. Math., 39:2, 3, SI (2018), 252–258
S. R. Nasyrov, “Families of elliptic functions and uniformization of complex tori with a unique point over infinity”, Probl. anal. Issues Anal., 7(25):2 (2018), 98–111
S. R. Nasyrov, “Uniformization of one-parametric families of complex tori”, Russian Math. (Iz. VUZ), 61:8 (2017), 36–45
V. I. Zvonilov, S. Yu. Orevkov, “Compactification of the Space of Branched Coverings of the Two-Dimensional Sphere”, Proc. Steklov Inst. Math., 298 (2017), 118–128
Nasyrov S.R., “Uniformization of Simply Connected Ramified Coverings of the Sphere By Rational Functions”, Dokl. Math., 96:2 (2017), 430–432
S. R. Nasyrov, “UNIFORMIZATsIYa ODNOSVYaZNYKh RAZVETVLENNYKh NAKRYTII SFERY RATsIONALNYMI FUNKTsIYaMI, “Doklady Akademii nauk””, Doklady Akademii Nauk, 2017, no. 1, 14
Natanzon S.M. Zabrodin A.V., “Formal solutions to the KP hierarchy”, J. Phys. A-Math. Theor., 49:14 (2016), 145206
Sergey M.Natanzon, “Dispersionless 2D Toda hierarchy, Hurwitz numbers and Riemann theorem”, J. Phys.: Conf. Ser., 670 (2016), 012036
S. Natanzon, A. Zabrodin, “Symmetric Solutions to Dispersionless 2D Toda Hierarchy, Hurwitz Numbers, and Conformal Dynamics”, International Mathematics Research Notices, 2014
A Zabrodin, “Laplacian growth in a channel and Hurwitz numbers”, J. Phys. A: Math. Theor, 46:18 (2013), 185203
Sarah Koch, “Teichmüller theory and critically finite endomorphisms”, Advances in Mathematics, 248 (2013), 573
Richard J. Szabo, Miguel Tierz, “Matrix models and stochastic growth in Donaldson-Thomas theory”, J. Math. Phys, 53:10 (2012), 103502
Andrei Bogatyrev, Springer Monographs in Mathematics, Extremal Polynomials and Riemann Surfaces, 2012, 115