Loading [MathJax]/jax/output/CommonHTML/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2002, Volume 57, Issue 3, Pages 463–533
DOI: https://doi.org/10.1070/RM2002v057n03ABEH000511
(Mi rm511)
 

This article is cited in 37 scientific papers (total in 37 papers)

Ramified coverings of the two-dimensional sphere and the intersection theory in spaces of meromorphic functions on algebraic curves

S. K. Lando

M. V. Lomonosov Moscow State University
References:
Abstract: In 1891 A. Hurwitz considered the problem of enumerating the ramified coverings of the two-dimensional sphere by two-dimensional surfaces with fixed types of branching over the branch points. In the original setting the problem was reformulated in terms of characters of the symmetric group. Recently it turned out that the problem is also very closely connected with diverse physical theories, with singularity theory, and with the geometry of the moduli spaces of complex curves. The discovery of these relationships has led to an enlargement of the class of cases in which the enumeration yields explicit formulae, and a clarification of the nature of the classical results. This survey is devoted to a description of the contemporary state of this thriving topic and is intended for experts in topology, the theory of Riemann surfaces, combinatorics, singularity theory, and mathematical physics. It can also serve as a guide to the modern literature on coverings of the sphere.
Received: 14.09.2001
Bibliographic databases:
Document Type: Article
UDC: 515.17
MSC: Primary 14H30, 14C17, 14H10; Secondary 05A15, 57M12, 05C30, 11R29, 14N35, 58C10, 81V05
Language: English
Original paper language: Russian
Citation: S. K. Lando, “Ramified coverings of the two-dimensional sphere and the intersection theory in spaces of meromorphic functions on algebraic curves”, Russian Math. Surveys, 57:3 (2002), 463–533
Citation in format AMSBIB
\Bibitem{Lan02}
\by S.~K.~Lando
\paper Ramified coverings of the two-dimensional sphere and the intersection theory in spaces
of meromorphic functions on algebraic curves
\jour Russian Math. Surveys
\yr 2002
\vol 57
\issue 3
\pages 463--533
\mathnet{http://mi.mathnet.ru/eng/rm511}
\crossref{https://doi.org/10.1070/RM2002v057n03ABEH000511}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1918855}
\zmath{https://zbmath.org/?q=an:1054.14037}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2002RuMaS..57..463L}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178591700002}
\elib{https://elibrary.ru/item.asp?id=13400576}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036558746}
Linking options:
  • https://www.mathnet.ru/eng/rm511
  • https://doi.org/10.1070/RM2002v057n03ABEH000511
  • https://www.mathnet.ru/eng/rm/v57/i3/p29
  • This publication is cited in the following 37 articles:
    1. Theo Douvropoulos, Joel Brewster Lewis, Alejandro H. Morales, “Hurwitz numbers for reflection groups III: Uniform formulae”, Journal of London Math Soc, 111:3 (2025)  crossref
    2. F. G. Avkhadiev, I. R. Kayumov, S. R. Nasyrov, “Extremal problems in geometric function theory”, Russian Math. Surveys, 78:2 (2023), 211–271  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. Andrea Brini, Karoline van Gemst, “Mirror symmetry for extended affine Weyl groups”, Journal de l'École polytechnique — Mathématiques, 9 (2022), 907  crossref
    4. Lima A.A., Sotkov G.M., Stanishkov M., “Correlation Functions of Composite Ramond Fields in Deformed D1-D5 Orbifold Scft2”, Phys. Rev. D, 102:10 (2020), 106004  crossref  mathscinet  isi
    5. Nasyrov S., “Families of Elliptic Functions, Realizing Coverings of the Sphere, With Branch-Points and Poles of Arbitrary Multiplicities”, Lobachevskii J. Math., 41:11, SI (2020), 2223–2230  crossref  mathscinet  isi
    6. B. S. Bychkov, “Stepeni kogomologicheskikh klassov multiosobennostei v prostranstvakh Gurvitsa ratsionalnykh funktsii”, Funkts. analiz i ego pril., 53:1 (2019), 16–30  mathnet  crossref  mathscinet  elib
    7. B. S. Bychkov, “Degrees of Cohomology Classes of Multisingularities in Hurwitz Spaces of Rational Functions”, Funct Anal Its Appl, 53:1 (2019), 11  crossref
    8. Nasyrov S., “Uniformization of Simply-Connected Ramified Coverings of the Sphere By Rational Functions”, Lobachevskii J. Math., 39:2, 3, SI (2018), 252–258  crossref  mathscinet  zmath  isi  scopus  scopus
    9. S. R. Nasyrov, “Families of elliptic functions and uniformization of complex tori with a unique point over infinity”, Probl. anal. Issues Anal., 7(25):2 (2018), 98–111  mathnet  crossref  elib
    10. S. R. Nasyrov, “Uniformization of one-parametric families of complex tori”, Russian Math. (Iz. VUZ), 61:8 (2017), 36–45  mathnet  crossref  isi
    11. V. I. Zvonilov, S. Yu. Orevkov, “Compactification of the Space of Branched Coverings of the Two-Dimensional Sphere”, Proc. Steklov Inst. Math., 298 (2017), 118–128  mathnet  crossref  crossref  mathscinet  isi  elib
    12. Nasyrov S.R., “Uniformization of Simply Connected Ramified Coverings of the Sphere By Rational Functions”, Dokl. Math., 96:2 (2017), 430–432  crossref  mathscinet  zmath  isi  scopus  scopus
    13. S. R. Nasyrov, “UNIFORMIZATsIYa ODNOSVYaZNYKh RAZVETVLENNYKh NAKRYTII SFERY RATsIONALNYMI FUNKTsIYaMI, “Doklady Akademii nauk””, Doklady Akademii Nauk, 2017, no. 1, 14  crossref
    14. Natanzon S.M. Zabrodin A.V., “Formal solutions to the KP hierarchy”, J. Phys. A-Math. Theor., 49:14 (2016), 145206  crossref  mathscinet  zmath  isi  elib  scopus
    15. Sergey M.Natanzon, “Dispersionless 2D Toda hierarchy, Hurwitz numbers and Riemann theorem”, J. Phys.: Conf. Ser., 670 (2016), 012036  crossref
    16. S. Natanzon, A. Zabrodin, “Symmetric Solutions to Dispersionless 2D Toda Hierarchy, Hurwitz Numbers, and Conformal Dynamics”, International Mathematics Research Notices, 2014  crossref  mathscinet  isi  scopus  scopus
    17. A Zabrodin, “Laplacian growth in a channel and Hurwitz numbers”, J. Phys. A: Math. Theor, 46:18 (2013), 185203  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    18. Sarah Koch, “Teichmüller theory and critically finite endomorphisms”, Advances in Mathematics, 248 (2013), 573  crossref  mathscinet  zmath  isi  scopus  scopus
    19. Richard J. Szabo, Miguel Tierz, “Matrix models and stochastic growth in Donaldson-Thomas theory”, J. Math. Phys, 53:10 (2012), 103502  crossref  mathscinet  zmath  isi  scopus  scopus
    20. Andrei Bogatyrev, Springer Monographs in Mathematics, Extremal Polynomials and Riemann Surfaces, 2012, 115  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1401
    Russian version PDF:679
    English version PDF:132
    References:158
    First page:4
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025