Loading [MathJax]/jax/output/SVG/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1972, Volume 27, Issue 1, Pages 1–42
DOI: https://doi.org/10.1070/RM1972v027n01ABEH001362
(Mi rm5005)
 

This article is cited in 15 scientific papers (total in 15 papers)

The convergence of tributions of functionals on stochastic processes

A. A. Borovkov
References:
Abstract: The first part of the paper contains a urvey of tne present state of research in the general problems of convergence of stochastic processes. An important place is given to theorems on weak convergence of distributions on metric spaces. Then a ifferent approach is proposed to the study of convergence of distributions of functionals on stochastic processes, which is connected with the approximation of the trajectories of a rocess by some family of functions. We think of approximation in terms of the nearness of the functionals in question. Using this approach we obtain all the main results on convergence in specific function spaces that are known at present. These results are obtained in their most general form without the requirement that the limiting processes should belong to the space under discussion. New limit theorems are also obtained and among them theorems for processes with discontinuities of the second kind and others.
Received: 16.06.1971
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: English
Original paper language: Russian
Citation: A. A. Borovkov, “The convergence of tributions of functionals on stochastic processes”, Russian Math. Surveys, 27:1 (1972), 1–42
Citation in format AMSBIB
\Bibitem{Bor72}
\by A.~A.~Borovkov
\paper The convergence of tributions of functionals on stochastic processes
\jour Russian Math. Surveys
\yr 1972
\vol 27
\issue 1
\pages 1--42
\mathnet{http://mi.mathnet.ru/eng/rm5005}
\crossref{https://doi.org/10.1070/RM1972v027n01ABEH001362}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=400325}
\zmath{https://zbmath.org/?q=an:0255.60005}
Linking options:
  • https://www.mathnet.ru/eng/rm5005
  • https://doi.org/10.1070/RM1972v027n01ABEH001362
  • https://www.mathnet.ru/eng/rm/v27/i1/p3
  • This publication is cited in the following 15 articles:
    1. Alice Callegaro, Matthew I. Roberts, “A spatially-dependent fragmentation process”, Probab. Theory Relat. Fields, 2024  crossref
    2. A. A. Mogul'skiǐ, “The Extended Large Deviation Principle for the Trajectories of a Compound Renewal Process”, Sib. Adv. Math., 32:1 (2022), 35  crossref
    3. A. A. Mogulskii, “Rasshirennyi printsip bolshikh uklonenii dlya traektorii obobschennogo protsessa vosstanovleniya”, Matem. tr., 24:1 (2021), 142–174  mathnet  crossref
    4. F. C. Klebaner, A. V. Logachov, A. A. Mogulskii, “Extended large deviation principle for trajectories of processes with independent and stationary increments on the half-line”, Problems Inform. Transmission, 56:1 (2020), 56–72  mathnet  crossref  crossref  isi  elib
    5. A. A. Borovkov, “Functional limit theorems for compound renewal processes”, Siberian Math. J., 60:1 (2019), 27–40  mathnet  crossref  crossref  mathscinet  isi  elib
    6. F. C. Klebaner, A. A. Mogulskii, “Large deviations for processes on half-line: Random Walk and Compound Poisson Process”, Sib. elektron. matem. izv., 16 (2019), 1–20  mathnet  crossref
    7. A. A. Mogul'skiǐ, “The extended large deviation principle for a process with independent increments”, Siberian Math. J., 58:3 (2017), 515–524  mathnet  crossref  crossref  isi  elib  elib
    8. A. A. Mogul'skiǐ, “The large deviation principle for a compound Poisson process”, Siberian Adv. Math., 27:3 (2017), 160–186  mathnet  crossref  crossref  elib
    9. A. A. Mogul'skiǐ, “The expansion theorem for the deviation integral”, Siberian Adv. Math., 23:4 (2013), 250–262  mathnet  crossref  mathscinet  elib
    10. A. A. Borovkov, A. A. Mogul'skii, “On large deviation principles for random walk trajectories. II”, Theory Probab. Appl., 57:1 (2013), 1–27  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    11. A. A. Borovkov, “Large deviation principles for random walks with regularly varying distributions of jumps”, Siberian Math. J., 52:3 (2011), 402–410  mathnet  crossref  mathscinet  isi
    12. A. A. Borovkov, A. A. Mogul'skiǐ, “Properties of a functional of trajectories which arises in studying the probabilities of large deviations of random walks”, Siberian Math. J., 52:4 (2011), 612–627  mathnet  crossref  mathscinet  isi
    13. D. S. Silvestrov, “Convergence in skorokhod $J$-topology for compositions of stochastic processes”, Theory Stoch. Process., 14(30):1 (2008), 126–143  mathnet  mathscinet  zmath
    14. Heinz Cremers, Dieter Kadelka, “On weak convergence of stocastic processes with Lusin path spaces”, manuscripta math, 45:2 (1984), 115  crossref  mathscinet  zmath  adsnasa  isi
    15. A. A. Borovkov, “Convergence of measures and random processes”, Russian Math. Surveys, 31:2 (1976), 1–69  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:897
    Russian version PDF:294
    English version PDF:29
    References:107
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025