Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2002, Volume 57, Issue 2, Pages 221–240
DOI: https://doi.org/10.1070/RM2002v057n02ABEH000495
(Mi rm495)
 

This article is cited in 20 scientific papers (total in 20 papers)

Metrically homogeneous spaces

S. A. Bogatyi

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: This survey discusses the problem of describing properties of the class of metric spaces in which the Uryson construction of a universal homogeneous metric space (for this class) can be carried out axiomatically. One of the main properties of this kind is the possibility of gluing together two metrics given on closed subsets and coinciding on their intersection. The uniqueness problem for a (countable or complete) homogeneous space universal in a given class of metric spaces is discussed. The problem of extending a Clifford translation of a compact subset of an (ultrametric) Uryson space to a Clifford translation of the entire Uryson space is studied.
Received: 08.10.2001
Bibliographic databases:
Document Type: Article
UDC: 515.124.4
MSC: Primary 54E35, 54C25, 54C20; Secondary 22F30, 54E45, 54E25, 54E40
Language: English
Original paper language: Russian
Citation: S. A. Bogatyi, “Metrically homogeneous spaces”, Russian Math. Surveys, 57:2 (2002), 221–240
Citation in format AMSBIB
\Bibitem{Bog02}
\by S.~A.~Bogatyi
\paper Metrically homogeneous spaces
\jour Russian Math. Surveys
\yr 2002
\vol 57
\issue 2
\pages 221--240
\mathnet{http://mi.mathnet.ru/eng/rm495}
\crossref{https://doi.org/10.1070/RM2002v057n02ABEH000495}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1918193}
\zmath{https://zbmath.org/?q=an:1063.54017}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2002RuMaS..57..221B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000177461400001}
\elib{https://elibrary.ru/item.asp?id=13398946}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036510617}
Linking options:
  • https://www.mathnet.ru/eng/rm495
  • https://doi.org/10.1070/RM2002v057n02ABEH000495
  • https://www.mathnet.ru/eng/rm/v57/i2/p3
  • This publication is cited in the following 20 articles:
    1. Anton Vikhrov, “Denseness of metric spaces in general position in the Gromov–Hausdorff class”, Topology and its Applications, 342 (2024), 108771  crossref
    2. E. Petrov, “The existence of continuations for different types of metrics”, Acta Math. Hungar., 2024  crossref
    3. Valeriǐ Nikolaevich Berestovskiǐ, Yuriǐ Gennadievich Nikonorov, “On m-point homogeneous polytopes in euclidean spaces”, Filomat, 37:25 (2023), 8405  crossref
    4. N. D. Lebedeva, A. M. Petrunin, “All-set-homogeneous spaces”, St. Petersburg Math. J., 35:3 (2024), 473–476  mathnet  crossref
    5. Jessica Popowicz, Aleksander Ivanov, “An amalgamation property for metric groups”, ADM, 33:1 (2022), 140  crossref
    6. Ishiki Y., “An Embedding, An Extension, and An Interpolation of Ultrametrics”, P-Adic Numbers Ultrametric Anal. Appl., 13:2 (2021), 117–147  crossref  mathscinet  isi
    7. Sabok M., “Completeness of the isomorphism problem for separable C*-algebras”, Invent. Math., 204:3 (2016), 833–868  crossref  mathscinet  zmath  isi  scopus
    8. Aleksander Ivanov, Barbara Majcher-Iwanow, “An amalgamation property for metric spaces”, Algebra Discrete Math., 22:2 (2016), 233–239  mathnet  mathscinet
    9. Dana Ashkenazi, Zvi Lotker, “The Quasicrystals Discovery as a Resonance of the Non-Euclidean Geometry Revolution: Historical and Philosophical Perspective”, Philosophia, 2013  crossref  isi  scopus  scopus
    10. Cherlin G., “Two problems on homogeneous structures, revisited”, Model Theoretic Methods in Finite Combinatorics, Contemporary Mathematics, 558, 2011, 319–415  crossref  mathscinet  zmath  isi
    11. The L. Nguyen Van, “Structural Ramsey Theory of Metric Spaces and Topological Dynamics of Isometry Groups Introduction”, Memoirs of the American Mathematical Society, 206:968 (2010), 1  crossref  mathscinet  isi  scopus  scopus
    12. Nguyen Van Thé Lionel, Sauer N.W., “The Urysohn sphere is oscillation stable”, Geom. Funct. Anal., 19:2 (2009), 536–557  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    13. Nguyen Van The Lionel, “Ramsey degrees of finite ultrametric spaces, ultrametric Urysohn spaces and dynamics of their isometry groups”, European J. Combin., 30:4 (2009), 934–945  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    14. Lopez-Abad J., Nguyen Van Thé L., “The oscillation stability problem for the Urysohn sphere: a combinatorial approach”, Topology Appl., 155:14 (2008), 1516–1530  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    15. Melleray J., “Some geometric and dynamical properties of the Urysohn space”, Topology Appl., 155:14 (2008), 1531–1560  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    16. Brodskiy N., Dydak J., Higes J., Mitra A., “Dimension zero at all scales”, Topology Appl., 154:14 (2007), 2729–2740  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    17. Vershik A.M., “Universality and randomness for the graphs and metric spaces”, Frontiers in Number Theory, Physics and Geometry I - ON RANDOM MATRICES, ZETA FUNCTIONS, AND DYNAMICAL SYSTEMS, 2006, 245–266  crossref  mathscinet  zmath  isi
    18. Kechris A.S., Pestov V.G., Todorcevic S., “Fraisse limits, Ramsey theory, and topological dynamics of automorphism groups”, Geom. Funct. Anal., 15:1 (2005), 106–189  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    19. Megrelishvili M., Schroder L., “Globalization of confluent partial actions on topological and metric spaces”, Topology Appl., 145:1-3 (2004), 119–145  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    20. Uspenskij V., “The Urysohn universal metric space is homeomorphic to a Hilbert space”, Topology Appl., 139:1-3 (2004), 145–149  crossref  mathscinet  zmath  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:897
    Russian version PDF:392
    English version PDF:86
    References:107
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025