Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1974, Volume 29, Issue 6, Pages 1–56
DOI: https://doi.org/10.1070/RM1974v029n06ABEH001301
(Mi rm4447)
 

This article is cited in 13 scientific papers (total in 14 papers)

Free modular lattices and their representations

I. M. Gel'fand, V. A. Ponomarev
References:
Abstract: Let be $L$ a modular lattice, and $V$ a finite-dimensional vector space over a field $k$. A representation of $L$ in $V$ is a morphism from $L$ into the lattice $\mathscr L(V)$ of all subspaces of $V$. In this paper we study representations of finitely generated free modular lattices $D^r$. An element $a$ of a lattice $L$ is called perfect if for every indecomposable representation $\rho\colon L\to\mathscr L(k^n)$ the subspace $\rho(a)$ of $V=k^n$ is such that $\rho(a)=0$ or $\rho(a)=V$. We construct and study certain important sublattices of $D^r$, called “cubicles”. All elements of the cubicles are perfect. There are indecomposable representations connected with the cubicles. It will be shown that almost all these representations, except the elementary ones, have the important property of complete irreducibility; here a representation $\rho$ of $L$ is called completely irreducible if the sublattice $\rho(L)\subset\mathscr L(k^n)$ is isomorphic to the lattice $\mathbf P(\mathbf Q, n-1)$ of linear submanifolds of projective space over the field $\mathbf Q$ of rational numbers.
Received: 10.06.1974
Bibliographic databases:
Document Type: Article
UDC: 519.4
MSC: 06C05, 13C10, 13B10
Language: English
Original paper language: Russian
Citation: I. M. Gel'fand, V. A. Ponomarev, “Free modular lattices and their representations”, Russian Math. Surveys, 29:6 (1974), 1–56
Citation in format AMSBIB
\Bibitem{GelPon74}
\by I.~M.~Gel'fand, V.~A.~Ponomarev
\paper Free modular lattices and their representations
\jour Russian Math. Surveys
\yr 1974
\vol 29
\issue 6
\pages 1--56
\mathnet{http://mi.mathnet.ru//eng/rm4447}
\crossref{https://doi.org/10.1070/RM1974v029n06ABEH001301}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=401566}
\zmath{https://zbmath.org/?q=an:0314.15003}
Linking options:
  • https://www.mathnet.ru/eng/rm4447
  • https://doi.org/10.1070/RM1974v029n06ABEH001301
  • https://www.mathnet.ru/eng/rm/v29/i6/p3
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:746
    Russian version PDF:265
    English version PDF:37
    References:84
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024