Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2001, Volume 56, Issue 4, Pages 615–647
DOI: https://doi.org/10.1070/RM2001v056n04ABEH000414
(Mi rm414)
 

This article is cited in 3 scientific papers (total in 4 papers)

$\mathscr N$-functions and their relationship with solutions of general hypergeometric systems and $GG$-systems

I. M. Gel'fand, M. I. Graev

Scientific Research Institute for System Studies of RAS
References:
Abstract: A function $\mathscr N(z,x,\omega)$ on $\mathbb C^n\times\mathbb C^N$ is assigned to any non-singular $n\times N$ complex matrix $\omega$, where $n$ and $N\geqslant n$ are arbitrary positive integers. A relationship is established between these functions and the solutions of general hypergeometric systems of differential equations and their generalizations, the so-called $GG$-systems. It is natural to treat the functions $\mathscr N(z,x,\omega)$ as regularizations of solutions of these systems. Conversely, from any function $\mathscr N(z,x,\omega)$ one can recover the set of solutions of the corresponding $GG$-system. Also considered are analogues of $GG$-systems and related functions $\mathscr N(z,x,\omega)$ obtained by replacing the differentiation operators $\partial/\partial x_j$ by operators of more general form, in particular, by $q$-differentiation operators.
Received: 04.07.2001
Russian version:
Uspekhi Matematicheskikh Nauk, 2001, Volume 56, Issue 4(340), Pages 3–34
DOI: https://doi.org/10.4213/rm414
Bibliographic databases:
Document Type: Article
UDC: 517.58
MSC: Primary 33C70; Secondary 46F12, 34B30
Language: English
Original paper language: Russian
Citation: I. M. Gel'fand, M. I. Graev, “$\mathscr N$-functions and their relationship with solutions of general hypergeometric systems and $GG$-systems”, Uspekhi Mat. Nauk, 56:4(340) (2001), 3–34; Russian Math. Surveys, 56:4 (2001), 615–647
Citation in format AMSBIB
\Bibitem{GelGra01}
\by I.~M.~Gel'fand, M.~I.~Graev
\paper $\mathscr N$-functions and their relationship with solutions of general hypergeometric systems and $GG$-systems
\jour Uspekhi Mat. Nauk
\yr 2001
\vol 56
\issue 4(340)
\pages 3--34
\mathnet{http://mi.mathnet.ru/rm414}
\crossref{https://doi.org/10.4213/rm414}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1861439}
\zmath{https://zbmath.org/?q=an:1060.33019}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2001RuMaS..56..615G}
\transl
\jour Russian Math. Surveys
\yr 2001
\vol 56
\issue 4
\pages 615--647
\crossref{https://doi.org/10.1070/RM2001v056n04ABEH000414}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000172882900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0041075549}
Linking options:
  • https://www.mathnet.ru/eng/rm414
  • https://doi.org/10.1070/RM2001v056n04ABEH000414
  • https://www.mathnet.ru/eng/rm/v56/i4/p3
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:815
    Russian version PDF:359
    English version PDF:34
    References:110
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024