Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2001, Volume 56, Issue 5, Pages 917–972
DOI: https://doi.org/10.1070/RM2001v056n05ABEH000402
(Mi rm402)
 

This article is cited in 3 scientific papers (total in 3 papers)

Gibbs and quantum discrete spaces

V. A. Malyshev

M. V. Lomonosov Moscow State University
References:
Abstract: The Gibbs field is one of the central objects of modern probability theory, mathematical statistical physics, and Euclidean field theory. In this paper we introduce and study a natural generalization of this field to the case in which the background space (a lattice, a graph) on which the random field is defined is itself a random object. Moreover, this randomness is given neither a priori nor independent of the configuration; on the contrary, the space and the configuration on it depend on each other, and both objects are given by a Gibbs construction. We refer to the resulting distribution as a Gibbs family because it parametrizes Gibbs fields on different graphs belonging to the support of the distribution. We also study the quantum analogue of Gibbs families and discuss relationships with modern string theory and quantum gravity.
Received: 17.11.2000
Bibliographic databases:
Document Type: Article
UDC: 519.219
MSC: Primary 60K35, 83C45, 82B20; Secondary 60G60, 82B10, 82B26, 57M15, 57R56, 81T30, 81T45, 0
Language: English
Original paper language: Russian
Citation: V. A. Malyshev, “Gibbs and quantum discrete spaces”, Russian Math. Surveys, 56:5 (2001), 917–972
Citation in format AMSBIB
\Bibitem{Mal01}
\by V.~A.~Malyshev
\paper Gibbs and quantum discrete spaces
\jour Russian Math. Surveys
\yr 2001
\vol 56
\issue 5
\pages 917--972
\mathnet{http://mi.mathnet.ru//eng/rm402}
\crossref{https://doi.org/10.1070/RM2001v056n05ABEH000402}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1892560}
\zmath{https://zbmath.org/?q=an:1074.82005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2001RuMaS..56..917M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000173791600002}
\elib{https://elibrary.ru/item.asp?id=13974483}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035562389}
Linking options:
  • https://www.mathnet.ru/eng/rm402
  • https://doi.org/10.1070/RM2001v056n05ABEH000402
  • https://www.mathnet.ru/eng/rm/v56/i5/p117
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024