Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1976, Volume 31, Issue 5, Pages 128–137
DOI: https://doi.org/10.1070/RM1976v031n05ABEH004193
(Mi rm3959)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the dimension of spaces with a compact group of transformations

B. A. Pasynkov
References:
Abstract: The main result of this paper is as follows:
{\it If a compact group $K$ acts continuously on a normal space $X$ so that the orbit space $X/K$ is metrizable, then $\dim X=\operatorname{Ind}X$}.
Particular cases of spaces on which a compact group acts continuously with a metrizable orbit space are locally compact groups and their quotient spaces and also almost metrizable (in particular, Čech-complete) groups [5] and their quotient spaces.
All the spaces we consider are assumed to be Hausdorff, and $X$ completely regular. All subgroups that occur are closed and all maps are continuous.
Received: 12.04.1976
Bibliographic databases:
Document Type: Article
UDC: 513.83
Language: English
Original paper language: Russian
Citation: B. A. Pasynkov, “On the dimension of spaces with a compact group of transformations”, Russian Math. Surveys, 31:5 (1976), 128–137
Citation in format AMSBIB
\Bibitem{Pas76}
\by B.~A.~Pasynkov
\paper On~the~dimension of~spaces with a~compact group of~transformations
\jour Russian Math. Surveys
\yr 1976
\vol 31
\issue 5
\pages 128--137
\mathnet{http://mi.mathnet.ru//eng/rm3959}
\crossref{https://doi.org/10.1070/RM1976v031n05ABEH004193}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=445470}
\zmath{https://zbmath.org/?q=an:0343.54031|0355.54026}
Linking options:
  • https://www.mathnet.ru/eng/rm3959
  • https://doi.org/10.1070/RM1976v031n05ABEH004193
  • https://www.mathnet.ru/eng/rm/v31/i5/p112
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025