Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2001, Volume 56, Issue 1, Pages 103–139
DOI: https://doi.org/10.1070/rm2001v056n01ABEH000358
(Mi rm358)
 

This article is cited in 203 scientific papers (total in 204 papers)

Borsuk's problem and the chromatic numbers of some metric spaces

A. M. Raigorodskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: A detailed survey is given of various results pertaining to two well-known problems of combinatorial geometry: Borsuk's problem on partitions of an arbitrary bounded $d$-dimensional set of non-zero diameter into parts of smaller diameter, and the problem of finding chromatic numbers of some metric spaces. Furthermore, a general method is described for obtaining good lower bounds for the minimum number of parts of smaller diameter into which an arbitrary non-singleton set of dimension $d$ can be divided as well as for the chromatic numbers of various metric spaces, in particular, $\mathbb R^d$ and $\mathbb Q^d$. Finally, some new lower bounds are proved for chromatic numbers in low dimensions, and new natural generalizations of the notion of chromatic number are proposed.
Received: 07.12.2000
Bibliographic databases:
Document Type: Article
UDC: 514.17+519.174
MSC: Primary 51M15, 54E35, 51M20, 05C15; Secondary 52A20, 52C10
Language: English
Original paper language: Russian
Citation: A. M. Raigorodskii, “Borsuk's problem and the chromatic numbers of some metric spaces”, Russian Math. Surveys, 56:1 (2001), 103–139
Citation in format AMSBIB
\Bibitem{Rai01}
\by A.~M.~Raigorodskii
\paper Borsuk's problem and the chromatic numbers of some metric spaces
\jour Russian Math. Surveys
\yr 2001
\vol 56
\issue 1
\pages 103--139
\mathnet{http://mi.mathnet.ru//eng/rm358}
\crossref{https://doi.org/10.1070/rm2001v056n01ABEH000358}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1845644}
\zmath{https://zbmath.org/?q=an:1008.54018}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2001RuMaS..56..103R}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170126400003}
\elib{https://elibrary.ru/item.asp?id=14182248}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0041082751}
Linking options:
  • https://www.mathnet.ru/eng/rm358
  • https://doi.org/10.1070/rm2001v056n01ABEH000358
  • https://www.mathnet.ru/eng/rm/v56/i1/p107
  • This publication is cited in the following 204 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:2255
    Russian version PDF:873
    English version PDF:90
    References:149
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024