Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2000, Volume 55, Issue 5, Pages 923–975
DOI: https://doi.org/10.1070/rm2000v055n05ABEH000321
(Mi rm321)
 

This article is cited in 439 scientific papers (total in 439 papers)

Determinantal random point fields

Alexander Soshnikovab

a Caltech, Department of Mathematics
b University of California, Davis
References:
Abstract: This paper contains an exposition of both recent and rather old results on determinantal random point fields. We begin with some general theorems including proofs of necessary and sufficient conditions for the existence of a determinantal random point field with Hermitian kernel and of a criterion for weak convergence of its distribution. In the second section we proceed with examples of determinantal random fields in quantum mechanics, statistical mechanics, random matrix theory, probability theory, representation theory, and ergodic theory. In connection with the theory of renewal processes, we characterize all Hermitian determinantal random point fields on $\mathbb R^1$ and $\mathbb Z^1$ with independent identically distributed spacings. In the third section we study translation-invariant determinantal random point fields and prove the mixing property for arbitrary multiplicity and the absolute continuity of the spectra. In the last section we discuss proofs of the central limit theorem for the number of particles in a growing box and of the functional central limit theorem for the empirical distribution function of spacings.
Received: 11.04.2000
Bibliographic databases:
Document Type: Article
UDC: 519.218
MSC: Primary 60G60, 60K35; Secondary 15A52, 60K05, 60F05, 37A25, 82C22
Language: English
Original paper language: Russian
Citation: Alexander Soshnikov, “Determinantal random point fields”, Russian Math. Surveys, 55:5 (2000), 923–975
Citation in format AMSBIB
\Bibitem{Sos00}
\by Alexander~Soshnikov
\paper Determinantal random point fields
\jour Russian Math. Surveys
\yr 2000
\vol 55
\issue 5
\pages 923--975
\mathnet{http://mi.mathnet.ru//eng/rm321}
\crossref{https://doi.org/10.1070/rm2000v055n05ABEH000321}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1799012}
\zmath{https://zbmath.org/?q=an:0991.60038}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2000RuMaS..55..923S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000168165100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034556390}
Linking options:
  • https://www.mathnet.ru/eng/rm321
  • https://doi.org/10.1070/rm2000v055n05ABEH000321
  • https://www.mathnet.ru/eng/rm/v55/i5/p107
  • This publication is cited in the following 439 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024