Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1999, Volume 54, Issue 6, Pages 1149–1196
DOI: https://doi.org/10.1070/rm1999v054n06ABEH000230
(Mi rm230)
 

This article is cited in 26 scientific papers (total in 28 papers)

New results on embeddings of polyhedra and manifolds in Euclidean spaces

D. Repovša, A. B. Skopenkovb

a University of Ljubljana
b Advanced Educational Scientific Center of M. V. Lomonosov Moscow State University — A. N. Kolmogorov School
References:
Abstract: The aim of this survey is to present several classical results on embeddings and isotopies of polyhedra and manifolds in $\mathbb R^m$. We also describe the revival of interest in this beautiful branch of topology and give an account of new results, including an improvement of the Haefliger–Weber theorem on the completeness of the deleted product obstruction to embeddability and isotopy of highly connected manifolds in $\mathbb R^m$ (Skopenkov) as well as the unimprovability of this theorem for polyhedra (Freedman, Krushkal, Teichner, Segal, Skopenkov, and Spiez) and for manifolds without the necessary connectedness assumption (Skopenkov). We show how algebraic obstructions (in terms of cohomology, characteristic classes, and equivariant maps) arise from geometric problems of embeddability in Euclidean spaces. Several classical and modern results on completeness or incompleteness of these obstructions are stated and proved. By these proofs we illustrate classical and modern tools of geometric topology (engulfing, the Whitney trick, van Kampen and Casson finger moves, and their generalizations).
Received: 12.08.1999
Bibliographic databases:
Document Type: Article
UDC: 515.14+515.16
MSC: Primary 57Q35, 57R40; Secondary 57R42, 57R52, 55S35, 57Q30, 57R20, 57N35, 52B11
Language: English
Original paper language: Russian
Citation: D. Repovš, A. B. Skopenkov, “New results on embeddings of polyhedra and manifolds in Euclidean spaces”, Russian Math. Surveys, 54:6 (1999), 1149–1196
Citation in format AMSBIB
\Bibitem{RepSko99}
\by D.~Repov{\v s}, A.~B.~Skopenkov
\paper New results on embeddings of polyhedra and manifolds in Euclidean spaces
\jour Russian Math. Surveys
\yr 1999
\vol 54
\issue 6
\pages 1149--1196
\mathnet{http://mi.mathnet.ru//eng/rm230}
\crossref{https://doi.org/10.1070/rm1999v054n06ABEH000230}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1744658}
\zmath{https://zbmath.org/?q=an:0958.57025}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1999RuMaS..54.1149R}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000087436000002}
\elib{https://elibrary.ru/item.asp?id=13319445}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033264962}
Linking options:
  • https://www.mathnet.ru/eng/rm230
  • https://doi.org/10.1070/rm1999v054n06ABEH000230
  • https://www.mathnet.ru/eng/rm/v54/i6/p61
  • This publication is cited in the following 28 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:633
    Russian version PDF:327
    English version PDF:31
    References:89
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024