Citation:
N. V. Nikolenko, “The method of Poincaré normal forms in problems of integrability of equations of evolution type”, Russian Math. Surveys, 41:5 (1986), 63–114
\Bibitem{Nik86}
\by N.~V.~Nikolenko
\paper The~method of Poincar\'e normal forms in problems of integrability of equations of evolution type
\jour Russian Math. Surveys
\yr 1986
\vol 41
\issue 5
\pages 63--114
\mathnet{http://mi.mathnet.ru/eng/rm2209}
\crossref{https://doi.org/10.1070/RM1986v041n05ABEH003423}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=878327}
\zmath{https://zbmath.org/?q=an:0632.35026}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1986RuMaS..41...63N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1986J565900003}
Linking options:
https://www.mathnet.ru/eng/rm2209
https://doi.org/10.1070/RM1986v041n05ABEH003423
https://www.mathnet.ru/eng/rm/v41/i5/p109
This publication is cited in the following 28 articles:
Toshiki Kondo, Mamoru Okamoto, “Norm inflation for a higher-order nonlinear Schrödinger equation with a derivative on the circle”, Partial Differ. Equ. Appl., 6:2 (2025)
Zhihua Liu, Pierre Magal, “Bogdanov–Takens bifurcation in a predator–prey model with age structure”, Z. Angew. Math. Phys., 72:1 (2021)
Dario Bambusi, Laurent Stolovitch, “Convergence to Normal Forms of Integrable PDEs”, Commun. Math. Phys., 376:2 (2020), 1441
Luca Biasco, Jessica Elisa Massetti, Michela Procesi, “An Abstract Birkhoff Normal Form Theorem and Exponential Type Stability of the 1d NLS”, Commun. Math. Phys., 375:3 (2020), 2089
Pierre Magal, Shigui Ruan, Applied Mathematical Sciences, 201, Theory and Applications of Abstract Semilinear Cauchy Problems, 2018, 249
Zhihua Liu, Pierre Magal, Shigui Ruan, “Normal forms for semilinear equations with non-dense domain with applications to age structured models”, Journal of Differential Equations, 2014
Dario Bambusi, Mathematics of Complexity and Dynamical Systems, 2012, 1337
Dario Bambusi, Encyclopedia of Complexity and Systems Science, 2009, 6709
Dario Bambusi, Encyclopedia of Complexity and Systems Science Series, Perturbation Theory, 2009, 229
D. Bambusi, J.-M. Delort, B. Grébert, J. Szeftel, “Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds”, Comm Pure Appl Math, 60:11 (2007), 1665
D. Bambusi, B. Grébert, “Birkhoff normal form for partial differential equations with tame modulus”, Duke Math. J., 135:3 (2006)
Percy Deift, Xin Zhou, “Perturbation theory for infinite-dimensional integrable systems on the line. A case study”, Acta Math, 188:2 (2002), 163
Yanguang C Li, “Existence of chaos in evolution equations”, Mathematical and Computer Modelling, 36:11-13 (2002), 1211
L. R. Volevich, A. R. Shirikyan, “Local dynamics for high-order semilinear hyperbolic equations”, Izv. Math., 64:3 (2000), 439–485
V. D. Belousov, V. E. Plisko, E. B. Yanovskaya, D. D. Sokolov, S. Yu. Maslov, A. A. Bukhshtab, V. I. Nechaev, V. M. Paskonov, V. A. Artamonov, A. V. Prokhorov, N. V. Efimov, B. V. Khvedelidze, I. V. Dolgachev, V. A. Iskovskikh, A. B. Ivanov, V. T. Bazylev, A. V. Arkhangel'skiǐ, A. A. Sapozhenko, P. S. Saltan, P. S. Soltan, V. A. Chuyanov, M. Sh. Farber, S. V. Shvedenko, V. P. Petrenko, I. P. Mysovskikh, V. A. Trenogin, M. K. Samarin, Yu. A. Kuznetsov, E. D. Solomentsev, M. S. Nikulin, L. D. Kudryavtsev, V. N. Latyshev, D. V. Anosov, A. L. Shmel'kin, L. N. Shevrin, L. V. Kuz'min, V. L. Popov, D. V. Alekseevskiǐ, V. N. Remeslennikov, P. L. Dobrushin, V. V. Prelov, G. S. Khovanskiǐ, A. L. Onishchik, A. K. Tolpygo, L. A. Sidorov, L. A. Bokut', A. Ya. Kiruta, E. A. Palyutin, A. D. Taǐmanov, E. I. Vilkas, V. V. Rumyantsev, E. G. D'yakonov, A. F. Shapkin, L. E. Evtushik, V. I. Sobolev, V. M. Starszhinskiǐ, S. J. Pokhozhaev, V. G. Karmanov, Encyclopaedia of Mathematics, 1995, 67
Bernd Aulbach, Barnabas M. Garay, “Partial linearization for noninvertible mappings”, Z angew Math Phys, 45:4 (1994), 505
H. P. McKean, J. Shatah, “The nonlinear Schrödinger equation and the nonlinear heat equation reduction to linear form”, Comm Pure Appl Math, 44:8-9 (1991), 1067