\Bibitem{Fom89}
\by A.~T.~Fomenko
\paper The symplectic topology of completely integrable Hamiltonian systems
\jour Russian Math. Surveys
\yr 1989
\vol 44
\issue 1
\pages 181--219
\mathnet{http://mi.mathnet.ru/eng/rm1982}
\crossref{https://doi.org/10.1070/RM1989v044n01ABEH002006}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=997687}
\zmath{https://zbmath.org/?q=an:0694.58012|0677.58023}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1989RuMaS..44..181F}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1989CD32200007}
Linking options:
https://www.mathnet.ru/eng/rm1982
https://doi.org/10.1070/RM1989v044n01ABEH002006
https://www.mathnet.ru/eng/rm/v44/i1/p145
This publication is cited in the following 87 articles:
Anatoly Fomenko, “Hidden symmetries in Hamiltonian geometry, topology, physics and mechanics”, Priroda, 2025, no. 1(1313), 23
S. E. Pustovoitov, “Issledovanie struktury sloeniya Liuvillya integriruemogo ellipticheskogo billiarda s polinomialnym potentsialom”, Chebyshevskii sb., 25:1 (2024), 62–102
D. A. Tuniyants, “Topology of isoenergetic surfaces of billiard books glued of rings”, Moscow University Mathematics Bulletin, 79:3 (2024), 130–141
E. S. Agureeva, V. A. Kibkalo, “Topological analysis of axisymmetric Zhukovsky system for the case of the Lie algebra e(2,1)”, Moscow University Mathematics Bulletin, 79:5 (2024), 207–222
A. Yu. Konyaev, E. A. Kudryavtseva, V. I. Sidel'nikov, “Geometry and topology of two-dimensional symplectic manifolds with generic singularities and Hamiltonian systems on them”, Moscow University Mathematics Bulletin, 79:5 (2024), 230–243
A. T. Fomenko, A. I. Shafarevich, V. A. Kibkalo, “Glavnye napravleniya i dostizheniya kafedry differentsialnoi geometrii i prilozhenii na sovremennom etape”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2024, no. 6, 27–37
V. V. Vedyushkina, S. E. Pustovoitov, “Classification of Liouville foliations of integrable topological billiards in magnetic fields”, Sb. Math., 214:2 (2023), 166–196
A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954
A. A. Kuznetsova, “Modeling of degenerate peculiarities of integrable billiard systems by billiard books”, Moscow University Mathematics Bulletin, 78:5 (2023), 207–215
Oleksandra Khokhliuk, Sergiy Maksymenko, “Homotopy types of diffeomorphism groups of polar Morse–Bott foliations on lens spaces, 1”, J. Homotopy Relat. Struct., 18:2-3 (2023), 313
S.E. Pustovoitov, “Classification of Singularities of the Liouville Foliation of an Integrable Elliptical Billiard with a Potential of Fourth Degree”, Russ. J. Math. Phys., 30:4 (2023), 643
Viktoriya Trifonova, “One more proof of Vassiliev's conjecture”, J. Knot Theory Ramifications, 32:04 (2023)
Elena A. Kudryavtseva, “Hidden toric symmetry and structural stability of singularities in integrable systems”, European Journal of Mathematics, 8:4 (2022), 1487
V. V. Vedyushkina, “Local modeling of Liouville foliations by billiards: implementation of edge invariants”, Moscow University Mathematics Bulletin, 76:2 (2021), 60–64
V. V. Vedyushkina, I. S. Kharcheva, “Billiard books realize all bases of Liouville foliations of integrable Hamiltonian systems”, Sb. Math., 212:8 (2021), 1122–1179
V. V. Vedyushkina, “Topological type of isoenergy surfaces of billiard books”, Sb. Math., 212:12 (2021), 1660–1674
S. E. Pustovoitov, “Topological analysis of an elliptic billiard in a fourth-order potential field”, Moscow University Mathematics Bulletin, 76:5 (2021), 193–205
Fomenko A.T. Vedyushkina V.V. Zav'yalov V.N., “Liouville Foliations of Topological Billiards With Slipping”, Russ. J. Math. Phys., 28:1 (2021), 37–55
A. T. Fomenko, V. V. Vedyushkina, “Billiards with Changing Geometry and Their Connection with the Implementation of the Zhukovsky and Kovalevskaya Cases”, Russ. J. Math. Phys., 28:3 (2021), 317
Anatoly T. Fomenko, Vladislav A. Kibkalo, Understanding Complex Systems, Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics, 2021, 3