Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1999, Volume 54, Issue 4, Pages 729–752
DOI: https://doi.org/10.1070/rm1999v054n04ABEH000179
(Mi rm179)
 

This article is cited in 25 scientific papers (total in 25 papers)

Complex analysis and differential topology on complex surfaces

S. Yu. Nemirovski

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: In the paper, the relationship between the theory of holomorphic functions on two-dimensional complex manifolds and their differential topology is described. The basic fact, established by using the Seiberg–Witten invariants, is that the topological characteristics of embedded real surfaces in Stein surfaces satisfy adjunction-type inequalities. A version of Gromov's $h$-principle for totally real embeddings shows that these topological inequalities are sharp. In some cases, these results can be used to describe the envelopes of holomorphy of embedded real surfaces in a given complex surface. Our examples include real surfaces in $\mathbb C^2$ and $\mathbb{CP}^2$ and in products of $\mathbb{CP}^1$ with non-compact Riemann surfaces. A similar technique can be applied to the study of geometric properties of strictly pseudoconvex domains in dimension two.
Received: 07.05.1999
Bibliographic databases:
Document Type: Article
UDC: 515.1
MSC: Primary 32E10, 32D10, 32J20; Secondary 32F15, 53C23, 57N13, 14J35
Language: English
Original paper language: Russian
Citation: S. Yu. Nemirovski, “Complex analysis and differential topology on complex surfaces”, Russian Math. Surveys, 54:4 (1999), 729–752
Citation in format AMSBIB
\Bibitem{Nem99}
\by S.~Yu.~Nemirovski
\paper Complex analysis and differential topology on complex surfaces
\jour Russian Math. Surveys
\yr 1999
\vol 54
\issue 4
\pages 729--752
\mathnet{http://mi.mathnet.ru//eng/rm179}
\crossref{https://doi.org/10.1070/rm1999v054n04ABEH000179}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1741278}
\zmath{https://zbmath.org/?q=an:0971.32016}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1999RuMaS..54..729N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000085500400002}
\elib{https://elibrary.ru/item.asp?id=13994588}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033262178}
Linking options:
  • https://www.mathnet.ru/eng/rm179
  • https://doi.org/10.1070/rm1999v054n04ABEH000179
  • https://www.mathnet.ru/eng/rm/v54/i4/p47
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025