Abstract:
The classical theory of Young tableaux is presented in the rather new and non-traditional language of arrays. With the usual operations (or algorithms) of insertion and jeu de taquin as a starting point, more elementary operations on arrays are introduced. The set of arrays equipped with these operations forms an object which can be referred to as a bicrystal. This formalism is presented in the first part of the paper, and its exposition is based on the theorem that the vertical and horizontal operators commute. In the second part the apparatus of arrays is used to present some topics in the theory of Young tableaux, namely, the plactic monoid, Littlewood–Richardson rule, Robinson–Schensted–Knuth correspondence, dual tableaux, plane partitions, and so on.
\Bibitem{DanKos05}
\by V.~I.~Danilov, G.~A.~Koshevoy
\paper Arrays and the combinatorics of Young tableaux
\jour Russian Math. Surveys
\yr 2005
\vol 60
\issue 2
\pages 269--334
\mathnet{http://mi.mathnet.ru/eng/rm1402}
\crossref{https://doi.org/10.1070/RM2005v060n02ABEH000824}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2152944}
\zmath{https://zbmath.org/?q=an:1081.05104}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005RuMaS..60..269D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000231201600002}
\elib{https://elibrary.ru/item.asp?id=25787168}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-23944505207}
Linking options:
https://www.mathnet.ru/eng/rm1402
https://doi.org/10.1070/RM2005v060n02ABEH000824
https://www.mathnet.ru/eng/rm/v60/i2/p79
This publication is cited in the following 24 articles:
Benjamin Brubaker, Gabriel Frieden, Pavlo Pylyavskyy, Travis Scrimshaw, “Crystal invariant theory I: geometric RSK”, Math. Z., 310:1 (2025)
Igor Pak, Proceedings of Symposia in Pure Mathematics, 110, Open Problems in Algebraic Combinatorics, 2024, 191
Takashi Imamura, Matteo Mucciconi, Tomohiro Sasamoto, “Skew RSK dynamics: Greene invariants, affine crystals and applications toq-Whittaker polynomials”, Forum of Mathematics, Pi, 11 (2023)
Aas E., Grinberg D., Scrimshaw T., “Multiline Queues With Spectral Parameters”, Commun. Math. Phys., 374:3 (2020), 1743–1786
V. I. Danilov, A. V. Karzanov, G. A. Koshevoy, “Cubillages of cyclic zonotopes”, Russian Math. Surveys, 74:6 (2019), 1013–1074
Terada I., King R.C., Azenhas O., “The Symmetry of Littlewood-Richardson Coefficients: a New Hive Model Involutory Bijection”, SIAM Discret. Math., 32:4 (2018), 2850–2899
E. Yu. Smirnov, “Multiple Flag Varieties”, Journal of Mathematical Sciences, 248:3 (2020), 338–373
Alexey L. Gorodentsev, Algebra II, 2017, 75
Alexey L. Gorodentsev, Algebra II, 2017, 241
Alexey L. Gorodentsev, Algebra II, 2017, 99
Alexey L. Gorodentsev, Algebra II, 2017, 295
Alexey L. Gorodentsev, Algebra II, 2017, 173
Alexey L. Gorodentsev, Algebra II, 2017, 57
Alexey L. Gorodentsev, Algebra II, 2017, 265
Alexey L. Gorodentsev, Algebra II, 2017, 315
Alexey L. Gorodentsev, Algebra II, 2017, 227
Alexey L. Gorodentsev, Algebra II, 2017, 151
Alexey L. Gorodentsev, Algebra II, 2017, 187
Alexey L. Gorodentsev, Algebra II, 2017, 21
Patrick Doolan, Sangjib Kim, “The Littlewood-Richardson rule and Gelfand-Tsetlin patterns”, Algebra Discrete Math., 22:1 (2016), 21–47