Loading [MathJax]/jax/output/SVG/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2005, Volume 60, Issue 2, Pages 269–334
DOI: https://doi.org/10.1070/RM2005v060n02ABEH000824
(Mi rm1402)
 

This article is cited in 24 scientific papers (total in 24 papers)

Arrays and the combinatorics of Young tableaux

V. I. Danilov, G. A. Koshevoy

Central Economics and Mathematics Institute, RAS
References:
Abstract: The classical theory of Young tableaux is presented in the rather new and non-traditional language of arrays. With the usual operations (or algorithms) of insertion and jeu de taquin as a starting point, more elementary operations on arrays are introduced. The set of arrays equipped with these operations forms an object which can be referred to as a bicrystal. This formalism is presented in the first part of the paper, and its exposition is based on the theorem that the vertical and horizontal operators commute. In the second part the apparatus of arrays is used to present some topics in the theory of Young tableaux, namely, the plactic monoid, Littlewood–Richardson rule, Robinson–Schensted–Knuth correspondence, dual tableaux, plane partitions, and so on.
Received: 14.07.2004
Bibliographic databases:
Document Type: Article
UDC: 519.116+519.142.1
MSC: Primary 05E05; Secondary 05B30, 05E05
Language: English
Original paper language: Russian
Citation: V. I. Danilov, G. A. Koshevoy, “Arrays and the combinatorics of Young tableaux”, Russian Math. Surveys, 60:2 (2005), 269–334
Citation in format AMSBIB
\Bibitem{DanKos05}
\by V.~I.~Danilov, G.~A.~Koshevoy
\paper Arrays and the combinatorics of Young tableaux
\jour Russian Math. Surveys
\yr 2005
\vol 60
\issue 2
\pages 269--334
\mathnet{http://mi.mathnet.ru/eng/rm1402}
\crossref{https://doi.org/10.1070/RM2005v060n02ABEH000824}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2152944}
\zmath{https://zbmath.org/?q=an:1081.05104}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005RuMaS..60..269D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000231201600002}
\elib{https://elibrary.ru/item.asp?id=25787168}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-23944505207}
Linking options:
  • https://www.mathnet.ru/eng/rm1402
  • https://doi.org/10.1070/RM2005v060n02ABEH000824
  • https://www.mathnet.ru/eng/rm/v60/i2/p79
  • This publication is cited in the following 24 articles:
    1. Benjamin Brubaker, Gabriel Frieden, Pavlo Pylyavskyy, Travis Scrimshaw, “Crystal invariant theory I: geometric RSK”, Math. Z., 310:1 (2025)  crossref
    2. Igor Pak, Proceedings of Symposia in Pure Mathematics, 110, Open Problems in Algebraic Combinatorics, 2024, 191  crossref
    3. Takashi Imamura, Matteo Mucciconi, Tomohiro Sasamoto, “Skew RSK dynamics: Greene invariants, affine crystals and applications toq-Whittaker polynomials”, Forum of Mathematics, Pi, 11 (2023)  crossref
    4. Aas E., Grinberg D., Scrimshaw T., “Multiline Queues With Spectral Parameters”, Commun. Math. Phys., 374:3 (2020), 1743–1786  crossref  mathscinet  isi
    5. V. I. Danilov, A. V. Karzanov, G. A. Koshevoy, “Cubillages of cyclic zonotopes”, Russian Math. Surveys, 74:6 (2019), 1013–1074  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. Terada I., King R.C., Azenhas O., “The Symmetry of Littlewood-Richardson Coefficients: a New Hive Model Involutory Bijection”, SIAM Discret. Math., 32:4 (2018), 2850–2899  crossref  mathscinet  isi
    7. E. Yu. Smirnov, “Multiple Flag Varieties”, Journal of Mathematical Sciences, 248:3 (2020), 338–373  mathnet  crossref  mathscinet
    8. Alexey L. Gorodentsev, Algebra II, 2017, 75  crossref
    9. Alexey L. Gorodentsev, Algebra II, 2017, 241  crossref
    10. Alexey L. Gorodentsev, Algebra II, 2017, 99  crossref
    11. Alexey L. Gorodentsev, Algebra II, 2017, 295  crossref
    12. Alexey L. Gorodentsev, Algebra II, 2017, 173  crossref
    13. Alexey L. Gorodentsev, Algebra II, 2017, 57  crossref
    14. Alexey L. Gorodentsev, Algebra II, 2017, 265  crossref
    15. Alexey L. Gorodentsev, Algebra II, 2017, 315  crossref
    16. Alexey L. Gorodentsev, Algebra II, 2017, 227  crossref
    17. Alexey L. Gorodentsev, Algebra II, 2017, 151  crossref
    18. Alexey L. Gorodentsev, Algebra II, 2017, 187  crossref
    19. Alexey L. Gorodentsev, Algebra II, 2017, 21  crossref
    20. Patrick Doolan, Sangjib Kim, “The Littlewood-Richardson rule and Gelfand-Tsetlin patterns”, Algebra Discrete Math., 22:1 (2016), 21–47  mathnet  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1320
    Russian version PDF:625
    English version PDF:113
    References:100
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025