Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2023, Volume 78, Issue 5, Pages 955–957
DOI: https://doi.org/10.4213/rm10146e
(Mi rm10146)
 

Brief communications

A lower bound for triangulation complexity for compact 3-manifolds with boundary

D. D. Nigomedyanovab, E. A. Fominykhabc

a Saint Petersburg State University
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
c St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Funding agency Grant number
Russian Science Foundation 22-11-00299
This work was supported by the Russian Science Foundation under grant no. 22-11-00299, http://rscf.ru/en/project/22-11-00299/, and performed at the Steklov Mathematical Institute of Russian Academy of Sciences.
Received: 17.07.2023
Russian version:
Uspekhi Matematicheskikh Nauk, 2023, Volume 78, Issue 5(473), Pages 177–178
DOI: https://doi.org/10.4213/rm10146
Bibliographic databases:
Document Type: Article
MSC: 57K30, 57Q15
Language: English
Original paper language: Russian

The notion of complexity is an important organising principle in the study of 3-manifolds. Let $M$ be a connected compact 3-manifold with boundary. An ideal triangulation of $M$ is a realization of the interior of $M$ as a gluing of a finite number of copies of the standard tetrahedron $\Delta$ with all its vertices removed, induced by a simplicial face-pairing of the corresponding copies of $\Delta$. The triangulation complexity $c_{\Delta}(M)$ of $M$ is the minimum number of tetrahedra in any ideal triangulation of $M$.

Upper complexity bounds arise usually from explicit constructions of triangulations, while finding lower bounds is a hard problem in general. Here we mention the lower bounds on the triangulation complexity of manifolds with boundary presented in [1]–[3]. These lower bounds allow one to determine the complexity of infinite families of 3-manifolds. Our contribution to this line of work is a new lower complexity bound obtained via $\mathbb{Z}_2$-homology. More precisely, we prove the following result.

Theorem 1. Let $M$ be a connected compact $3$-manifold with boundary. Then $c_{\Delta}(M) \geqslant \beta_1(M,\mathbb{Z}_2)$.

To prove Theorem 1 we use an equivalent approach to complexity via Matveev’s theory of special spines [4]. Let $\mathtt{d}(P)$ and $\mathtt{v}(P)$ denote the number of 2-components and the number of true vertices of the special polyhedron $P$, respectively. Since the singular graph of $P$ is 4-regular, it contains exactly $2\mathtt{v}(P)$ edges, and we see that $\chi(P) = \mathtt{d}(P) - \mathtt{v}(P)$. Let $\beta_k(X,\mathbb{Z}_2)$ denote the $k$th Betti number of the space $X$ with coefficients in $\mathbb{Z}_2$.

Lemma. For every connected special polyhedron $P$ the following relations hold: (i) $\mathtt{d}(P) \geqslant \beta_2(P, \mathbb{Z}_2)+1$; (ii) $\mathtt{d}(P)-(\beta_2(P, \mathbb{Z}_2)+1)= \mathtt{v}(P)-\beta_1(P, \mathbb{Z}_2)$.

Proof. The polyhedron $P$ has a natural cell complex structure, which consists of true vertices, edges, and 2-components. Consider the cellular chain complex of $P$:
$$ \begin{equation*} 0\to C_{2}\xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0\to 0 \end{equation*} \notag $$
with coefficients in $\mathbb{Z}_2$. We have
$$ \begin{equation*} \mathtt{d}(P)=\dim C_2=\dim(\operatorname{Ker} \partial_2)+\dim(\operatorname{Im} \partial_2)=\beta_2(P, \mathbb{Z}_2)+ \dim(\operatorname{Im} \partial_2). \end{equation*} \notag $$
We denote the edges and $2$-components of $P$ by $\gamma_1,\dots,\gamma_{2\mathtt{v}(P)}$ and $\alpha_1,\dots,\alpha_{\mathtt{d}(P)}$, respectively. It is an easy consequence of the definition of the special polyhedron that
$$ \begin{equation*} \partial_2(\alpha_1+\cdots+\alpha_{\mathtt{d}(P)})= \gamma_1+\cdots+\gamma_{2\mathtt{v}(P)}. \end{equation*} \notag $$
Hence $\dim(\operatorname{Im} \partial_2) \geqslant 1$, and statement (i) follows.

Statement (ii) is immediate since $P$ is connected, so that $\chi(P)=1-\beta_1(P, \mathbb{Z}_2)+ \beta_2(P, \mathbb{Z}_2)=\mathtt{d}(P)-\mathtt{v}(P)$. $\Box$

Proof of Theorem 1. Let $P$ be the special polyhedron dual to a minimal ideal triangulation of $M$ (see [4]). Then $c_{\Delta}(M)=\mathtt{v}(P)$. Because $\partial M \ne \varnothing$, the polyhedron $P$ is homotopy equivalent to $M$; thus, $\beta_1(P, \mathbb{Z}_2)=\beta_1(M, \mathbb{Z}_2)$. Then the lemma implies that $c_{\Delta}(M) \geqslant \beta_1(M, \mathbb{Z}_2)$. $\Box$

It was shown in [5] that the number of edges in any ideal triangulation of a compact 3-manifold $M$ with boundary is bounded below by the number of connected components of $\partial M$, denoted by $|\partial M|$. This provides the following lower complexity bound.

Theorem 2. Let $M$ be a connected compact $3$-manifold with boundary. Then $c_{\Delta}(M) \geqslant |\partial M|-\chi(M)$.

Proof. Let $P$ be the special polyhedron dual to a minimal ideal triangulation $\mathcal{T}$ of $M$. Then $\chi(M)=\chi(P)$, $c_{\Delta}(M)=\mathtt{v}(P)$, and $\mathtt{d}(P)$ equals the number of edges in $\mathcal{T}$. By [5], Lemma 2.1, we have $\mathtt{d}(P) \geqslant |\partial M|$. Hence $c_{\Delta}(M)=\mathtt{d}(P)-\chi(P) \geqslant |\partial M|-\chi(M)$. $\Box$

It turns out that the lower bound found in Theorem 1 is stronger than the one in Theorem 2.

Theorem 3. Let $M$ be a compact $3$-manifold with boundary. Then $\beta_1(M, \mathbb{Z}_2) \geqslant |\partial M|-\chi(M)$.

Proof. Consider the long exact sequence
$$ \begin{equation*} \cdots\to H_1(M,\partial M;\mathbb{Z}_2) \xrightarrow{\varphi} H_0(\partial M;\mathbb{Z}_2) \xrightarrow{\psi}H_0(M; \mathbb{Z}_2) \to \cdots \end{equation*} \notag $$
of relative homology groups with coefficients in $\mathbb{Z}_2$. The exactness of this sequence implies that
$$ \begin{equation*} \beta_0(\partial M; \mathbb{Z}_2)=\dim(\operatorname{Im} \psi)+ \dim(\operatorname{Im} \varphi) \leqslant \beta_0(M; \mathbb{Z}_2)+ \beta_1(M, \partial M; \mathbb{Z}_2). \end{equation*} \notag $$
Lefschetz duality provides a natural isomorphism $H_1(M, \partial M; \mathbb{Z}_2) \cong H^2(M; \mathbb{Z}_2)$. Since the group $H_2(M; \mathbb{Z}_2)$ is finitely generated, the vector spaces $H_2(M; \mathbb{Z}_2)$ and $H^2(M; \mathbb{Z}_2)$ are finite-dimensional and mutually dual. In particular, they have the same dimension. Hence $\beta_1(M,\partial M;\mathbb{Z}_2)=\beta_2(M;\mathbb{Z}_2)$. Summing up, we deduce that
$$ \begin{equation*} \begin{aligned} \, \beta_1(M,\mathbb{Z}_2)&=\beta_0(M;\mathbb{Z}_2)+\beta_2(M;\mathbb{Z}_2)-\chi(M) \\ &\geqslant \beta_0(\partial M;\mathbb{Z}_2)-\chi(M)=|\partial M|-\chi(M). \qquad\square \end{aligned} \end{equation*} \notag $$

In upcoming papers we will describe the class $\mathcal{M}_h$ of connected compact 3- manifolds for which the lower bound in Theorem 1 is attained. We will show that $\mathcal{M}_h$ is infinite and prove that all manifolds in $\mathcal{M}_h$, except six manifolds of small complexity, are hyperbolic with totally geodesic boundary.


Bibliography

1. E. Fominykh, S. Garoufalidis, M. Goerner, V. Tarkaev, and A. Vesnin, Exp. Math., 25:4 (2016), 466–481  crossref  mathscinet  zmath
2. W. Jaco, H. Rubinstein, J. Spreer, and S. Tillmann, J. Topol., 13:1 (2020), 308–342  crossref  mathscinet  zmath
3. M. Lackenby and J. S. Purcell, “The triangulation complexity of fibred 3-manifolds”, Geom. Topol. (to appear); 2022 (v1 – 2019), 77 pp., arXiv: 1910.10914
4. S. Matveev, Algorithmic topology and classification of 3-manifolds, Algorithms Comput. Math., 9, 2nd ed., Springer, Berlin, 2007, xiv+492 pp.  crossref  mathscinet  zmath
5. R. Frigerio, B. Martelli, and C. Petronio, J. Differential Geom., 64:3 (2003), 425–455  crossref  mathscinet  zmath

Citation: D. D. Nigomedyanov, E. A. Fominykh, “A lower bound for triangulation complexity for compact 3-manifolds with boundary”, Russian Math. Surveys, 78:5 (2023), 955–957
Citation in format AMSBIB
\Bibitem{NigFom23}
\by D.~D.~Nigomedyanov, E.~A.~Fominykh
\paper A lower bound for triangulation complexity for compact 3-manifolds with boundary
\jour Russian Math. Surveys
\yr 2023
\vol 78
\issue 5
\pages 955--957
\mathnet{http://mi.mathnet.ru//eng/rm10146}
\crossref{https://doi.org/10.4213/rm10146e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4673249}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023RuMaS..78..955N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001184355800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85191429791}
Linking options:
  • https://www.mathnet.ru/eng/rm10146
  • https://doi.org/10.4213/rm10146e
  • https://www.mathnet.ru/eng/rm/v78/i5/p177
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:290
    Russian version PDF:20
    English version PDF:42
    Russian version HTML:77
    English version HTML:116
    References:34
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024