Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2023, Volume 78, Issue 4, Pages 779–781
DOI: https://doi.org/10.4213/rm10145e
(Mi rm10145)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

On the interaction of shock waves in two-dimensional isobaric media

Yu. G. Rykov

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
References:
Received: 17.07.2023
Bibliographic databases:
Document Type: Article
MSC: 35K57, 76K05, 76N15
Language: English
Original paper language: Russian

This note discusses possible types of interaction of strong singularities in a two- dimensional medium in the absence of its own pressure drop. The immediate model of such media is the equations of gas dynamics in which the pressure $P$ is formally assumed to be zero. The resulting system of equations is a quasi-linear system with an incomplete set of eigenvalues and vectors. Therefore, its generalized solutions should be understood in the sense of Radon measures [1], and the corresponding shock waves are evolving strong singularities containing the delta function in the density $\varrho$ on manifolds of various dimensions.

The system of equations under consideration models the processes of matter concentration and is used in describing a number of phenomena in dispersed and multiphase media (see, for example, [2]) and in astrophysical applications related to the large-scale structure of the Universe (see, for example, [3]). There are also parallels with the formalism of quantum mechanics (Schrödinger’s equation) that arise in considerations of self-gravitating media (see, for example, [4] and [5]). Note that non-classical shock waves of another type that satisfy evolutionary conditions different from the known Lax conditions also arise in applications: see, for example, [6].

Let $\mathbf{x}\equiv(x,y)$, $(t,\mathbf{x})\in\mathbb{R}_{+}\times \mathbb{R}^{2}$, and $\mathbf{\nabla}=(\partial/\partial x,\partial/\partial y)$; then the two-dimensional system of equations of pressureless gas dynamics can be written as follows:

$$ \begin{equation} \frac{\partial\varrho}{\partial t}+\mathbf{\nabla}\cdot \varrho\mathbf{u}=0,\qquad \frac{\partial(\varrho\mathbf{u})}{\partial t}+\mathbf{\nabla}\cdot (\varrho\mathbf{u}\otimes\mathbf{u})=0, \end{equation} \tag{1} $$
where $\varrho\geqslant 0$ is the medium density, $\mathbf{u}\equiv (u,v)$ is the velocity vector, and $\otimes$ denotes the tensor product. Let the initial Cauchy data also be given: $\varrho(0,\mathbf{x})=\varrho_0(\mathbf{x})\in L^{\infty}(\mathbb{R}^2)$ and $\mathbf{u}(0,\mathbf{x})=\mathbf{u}_{0}(\mathbf{x})\in L^{\infty}(\mathbb{R}^{2})$. It is natural for generalized solutions of system (1) that there arise curves in the $\mathbf{x}$-space or, equivalently, surfaces in the $(t,\mathbf{x})$-space on which mass and momentum concentrate with densities $M(t,l)$ and $\mathbf{I}(t,l)$. Let such surfaces be defined parametrically by $\mathbf{X}\equiv\bigl(\chi(t,l),\gamma(t,l)\bigr)$. Then for generalized solutions of (1) the Rankine–Hugoniot relations are fulfilled (see [7] and [8]):
$$ \begin{equation} \begin{aligned} \, \frac{\partial M}{\partial t}&=\frac{\partial\chi}{\partial l} \{V[\varrho]-[\varrho v]\}-\frac{\partial\gamma}{\partial l} \{U[\varrho]-[\varrho u]\}, \\ \frac{\partial \mathbf{I}}{\partial t}&=\frac{\partial\chi}{\partial l} \{V[\varrho\mathbf{u}]-[\varrho v\mathbf{u}]\}- \frac{\partial\gamma}{\partial l}\{U[\varrho\mathbf{u}]- [\varrho u\mathbf{u}]\}, \end{aligned} \end{equation} \tag{2} $$
where $\mathbf{I}=M\mathbf{U}$, $\mathbf{U}\equiv(U,V)\equiv (\partial\chi/\partial t,\partial\gamma/\partial t)$ and $[f]\equiv f(t,\mathbf{X}+0)-f(t,\mathbf{X}-0)$.

It was also shown in [7] that, in a collision, shock waves (2) form, generally speaking, a shock wave of the same type but with increased density. However, it turns out that there is also another type of interaction.

Theorem 1. There exist initial data $\varrho_{0}$ and $\mathbf{u}_{0}$ such that in the generalized solution of system (1) there are two shock waves of type (2) which, when interacting, generate the delta function at a point in the measures of mass and momentum in the $\mathbf{x}$-space.

The statement of Theorem 1 means that in the Cauchy problem for (1) it is possible to form an evolving hierarchy of shock waves on manifolds of different dimensions; for the modified Rankine-Hugoniot relation in this case, see [9]. Such a hierarchy will have a much richer structure when one goes over to the multidimensional case. Also, Theorem 1 implements an abstract construction in [10] and allows us to give the following variational interpretation of the generalized solution in terms of a Lagrangian mapping ${\mathcal L}_{t}\colon\mathbf{a}\to\mathbf{x}$, where $\mathbf{a}\equiv(a,b)$ are the coordinates on the initial (Lagrangian) plane, in the case of an interaction leading to the emergence of a delta function at a point.

Fix $t>0$. Let $A_{1}$ be a set of disjoint domains in $\mathbb{R}^{2}$, and let $A_{2}$ be a set of domains obtained as follows. Consider a set of disjoint regions $G_{\alpha}\subset \mathbb{R}^{2}\setminus A_{1}$ of the form $G_{\alpha}=\{\mathbf{a}_{\alpha}(s,l),\, s\in [s_{\alpha}^{1},s_{\alpha}^{2}],\,l\in[l_{\alpha}^{1},l_{\alpha}^{2}]\}$. Then for each $\alpha$, $A_{2}$ includes all domains described by the parametrization $\mathbf{a}_{\alpha}$ but also satisfying the conditions $l\in[l^{1},l^{2}]\subset[l_{\alpha}^{1},l_{\alpha}^{2}]$ and $0<|l^{1}-l^{2}|\leqslant|l_{\alpha}^{1}-l_{\alpha}^{2}|$. Also let $A_{3}$ be the set of all domains contained in $\mathbb{R}^{2}\setminus(A_{1}\cup A_{2})$, and let $B=A_{1}\cup A_{2}\cup A_{3}$. Set

$$ \begin{equation} \mathbf{F}(t,\mathbf{x};G)=\iint_{G}\biggl[\mathbf{u}_{0}(\mathbf{a})- \frac{\mathbf{x}-\mathbf{a}}{t}\biggr] \varrho_{0}(\mathbf{a})\,d\mathbf{a},\qquad G\in B. \end{equation} \tag{3} $$

By the derivative of $\mathbf{F}$ over the area containing a point $\mathbf{a}$ we mean the quantity

$$ \begin{equation} \frac{\delta\mathbf{F}}{\delta\mathbf{a}}=\lim_{|G|\downarrow\min} \frac{\mathbf{F}(t,\mathbf{x};G)}{|G|}\,,\qquad \mathbf{a}\in G\in B \end{equation} \tag{4} $$
(the notation $|G|\downarrow\min$ means that the area of $G$ tends to a minimum under the condition $G\in B$).

Note that, generally speaking, instead of the measure $\varrho_{0}\,d\mathbf{a}$ an arbitrary non- negative Radon measure $M_{0}(d\mathbf{a})$ can be used in (3). However, in this case formula (4) requires some additional care.

Theorem 2. Let there exists a generalized solution of system (1). Consider an arbitrary $t>0$. Then for any $\mathbf{a}\in\mathbb{R}^{2}$, except for a set of Lebesgue measure zero, there exists $\mathbf{x}$ such that $\delta\mathbf{F}(t,\mathbf{x};G)/\delta\mathbf{a}=0$.

Theorem 2 describes the properties of the Lagrangian mapping ${\mathcal L}_{t}$, which can be constructed with the help of the function $\mathbf{F}$, and is an implementation of a more abstract form of the variational principle presented in [11].


Bibliography

1. Weinan E, Yu. G. Rykov, and Ya. G. Sinai, Comm. Math. Phys., 177:2 (1996), 349–380  crossref  mathscinet  zmath  adsnasa
2. A. N. Kraiko, J. Appl. Math. Mech., 43:3 (1980), 539–549  crossref  mathscinet  zmath  adsnasa
3. S. N. Gurbatov, A. I. Saichev, and S. F. Shandarin, Phys. Usp., 55:3 (2012), 223–249  mathnet  crossref  adsnasa
4. P.-H. Chavanis, Phys. Rev. D, 84:6 (2011), 063518, 5 pp.  crossref  adsnasa
5. T. Harko and E. J. Madarassy, Eur. Phys. J. C, 82:5 (2022), 401, 28 pp.  crossref  adsnasa
6. A. G. Kulikovskii and A. P. Chugainova, Russian Math. Surveys, 77:1 (2022), 47–79  mathnet  crossref  mathscinet  zmath  adsnasa
7. Jiequan Li, Tong Zhang, and Shuli Yang, The two-dimensional Riemann problem in gas dynamics, Pitman Monogr. Surveys Pure Appl. Math., 98, Longman, Harlow, 1998, x+300 pp.  crossref  mathscinet  zmath
8. Yu. G. Rykov, Singularities of the type of shock waves in pressureless medium, solutions in the sense of measures and in the sense of Kolombo, Preprints of the Keldysh Institute of Applied Mathematics, 1998 (Russian)  mathnet
9. A. I. Aptekarev and Yu. G. Rykov, Math. Notes, 112:4 (2022), 495–504  mathnet  crossref  mathscinet  zmath
10. A. I. Aptekarev and Yu. G. Rykov, Dokl. Math., 99:1 (2019), 79–82  mathnet  crossref  mathscinet  zmath
11. A. I. Aptekarev and Yu. G. Rykov, Russian Math. Surveys, 74:6 (2019), 1117–1119  mathnet  crossref  mathscinet  zmath  adsnasa

Citation: Yu. G. Rykov, “On the interaction of shock waves in two-dimensional isobaric media”, Russian Math. Surveys, 78:4 (2023), 779–781
Citation in format AMSBIB
\Bibitem{Ryk23}
\by Yu.~G.~Rykov
\paper On the interaction of shock waves in two-dimensional isobaric media
\jour Russian Math. Surveys
\yr 2023
\vol 78
\issue 4
\pages 779--781
\mathnet{http://mi.mathnet.ru//eng/rm10145}
\crossref{https://doi.org/10.4213/rm10145e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4687809}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023RuMaS..78..779R}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001146060800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85185964538}
Linking options:
  • https://www.mathnet.ru/eng/rm10145
  • https://doi.org/10.4213/rm10145e
  • https://www.mathnet.ru/eng/rm/v78/i4/p199
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:406
    Russian version PDF:32
    English version PDF:59
    Russian version HTML:122
    English version HTML:134
    References:99
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024