Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2023, Volume 78, Issue 3, Pages 563–565
DOI: https://doi.org/10.4213/rm10116e
(Mi rm10116)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

Derived category of moduli of parabolic bundles on $\mathbb{P}^1$

A. V. Fonarevab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b National Research University Higher School of Economics
References:
Received: 12.05.2023
Russian version:
Uspekhi Matematicheskikh Nauk, 2023, Volume 78, Issue 3(471), Pages 177–178
DOI: https://doi.org/10.4213/rm10116
Bibliographic databases:
Document Type: Article
MSC: 14F05, 14H60
Language: English
Original paper language: Russian

1. Moduli of bundles on curves

For simplicity we work over the field of complex numbers. Let $C$ be a smooth projective curve of genus $g \geqslant 2$. In [1] it was shown that for a general $C$ its bounded derived category of coherent sheaves $D(C)$ embeds in the derived category $D(M)$, where $M$ is the moduli space of stable rank $2$ bundles on $C$ with fixed determinant of odd degree. This result was independently obtained in [2]. A general statement, which was seemingly shown in [3], is that there is a semiorthogonal decomposition

$$ \begin{equation} D(M) =\bigl\langle \mathcal{O}, \mathcal{O}(1), D(C), D(C)(1), \ldots, D(S^{g-2}C), D(S^{g-2}C)(1), D(S^{g-1}C) \bigr\rangle, \end{equation} \tag{1} $$
where $S^iC$ denotes the $i$th symmetric power of the curve $C$.

A key ingredient in [1] was an explicit geometric description of $M$ for hyperelliptic curves. Let $C$ be hyperelliptic of genus $g$. Choose a coordinate on $\mathbb{P}^1$ so that the branching points $p_i=(1:a_i)$, $i=1,\dots,2g+2$, of the hyperelliptic projection are not at infinity. With the curve $C$ one associates the net of quadrics generated by

$$ \begin{equation} q_0=a_1x_1^2+a_2x_2^2+\cdots+a_{d}x_{d}^2, \qquad q_\infty=-(x_1^2+x_2^2+\cdots+x_{d}^2), \end{equation} \tag{2} $$
where $d=2g+2$ and the $x_i$ for $i=1,\dots,d$ are coordinates on a fixed $d$-dimensional vector space $V$. In turns out that $M$ is isomorphic to the space of $(g-1)$-dimensional subspaces in $V$ which are isotropic with respect to $q_0$ and $q_\infty$ (see [4]).

2. Moduli of parabolic bundles on $\mathbb{P}^1$

It is natural to try to generalise the previous results to the case when $V$ is of dimension $d=2g+1$ for some $g>1$. Once again, consider the net of quadrics (2) for distinct $a_1,\dots,a_{2g+1}$. It turns out that the variety of subspaces of dimension $g-1$ in $V$ isotropic with respect to $q_0$ and $q_\infty$ is isomorphic to the moduli space $\mathcal{M}$ of stable quasiparabolic bundles on rank $2$ and degree $0$ on $\mathbb{P}^1$ with weights $1/2$ at the marked points $p_i=(1:a_i)$ (see [5]). Meanwhile, $\mathcal{M}$ is isomorphic to the moduli space of rank $2$ bundles on stacky $\mathbb{P}^1$ with $\mathbb{Z}/2\mathbb{Z}$ structure at the points $p_i$ (see [6]); denote the latter space by $\mathcal{C}$. The following conjecture generalises the decomposition (1).

Conjecture. There is a semiorthogonal decomposition

$$ \begin{equation} D(\mathcal{M}) =\big\langle \mathcal{O}, D(\mathcal{C}), D(\widetilde{S^2\mathcal{C}}), \dots, D(\widetilde{S^{g-1}\mathcal{C}}) \big\rangle, \end{equation} \tag{3} $$
where $\widetilde{S^k\mathcal{C}}$ denotes the root stack obtained from $\mathbb{P}^k$ by extracting the square root from $2g+1$ hyperplanes in general position..

From Theorem 4.9 in [7] it follows that the derived category $D(\widetilde{S^k\mathcal{C}})$ carries a full exceptional collection. Thus, the same must be true for $D(\mathcal{M})$.

3. Computing the rank of $K_0(\mathcal{M})$

As evidence in support of our conjecture, we compute the ranks of the Grothendieck groups of the left- and right-hand sides of (3). The derived category of $\widetilde{S^k\mathcal{C}}$ has a semiorthogonal decomposition indexed by subsets whose components are the derived categories of intersections $\bigcap_{i\in I}H_i=\mathbb{P}^{k-|I|}$, where the index $I$ runs over the subsets $I\subseteq\{1,\dots,2g+1\}$ and $H_i$ is the $i$th hypersurface (see [7], Theorem 4.9). We conclude that the rank of the Grothendieck group of the right-hand side of (3) equals

$$ \begin{equation*} l_g=\displaystyle\sum_{k=0}^{g-1}\displaystyle\sum_{t=0}^k(t+1) \begin{pmatrix} 2g+1 \\ k-t\end{pmatrix}. \end{equation*} \notag $$

Next we use the interpretation of $\mathcal{M}$ as the moduli space of parabolic bundles. A series of varieties $\mathcal{M}_0, \mathcal{M}_1,\dots,\mathcal{M}_{g-1}$ was constructed in [8] such that $\mathcal{M}_0=\mathbb{P}^{2g-2}$, $\mathcal{M}_1$ is a blowup of $\mathcal{M}_0$ in $(2g+1)$ points, $\mathcal{M}_{g-1}\simeq\mathcal{M}$, and $\mathcal{M}_{i+1}$ can be obtained from $\mathcal{M}_i$ via an anti-flip: in $\mathcal{M}_i$ one must blow up

$$ \begin{equation*} n_i=\begin{pmatrix} 2g+1 \\ i+1 \end{pmatrix} + \begin{pmatrix} 2g+1 \\ i-1 \end{pmatrix} + \begin{pmatrix} 2g+1 \\ i-3 \end{pmatrix} + \cdots \end{equation*} \notag $$
subvarieties isomorphic to $\mathbb{P}^i$, and then blow down the exceptional divisors to subvarieties isomorphic to $\mathbb{P}^{2g-3-i}$ in $\mathcal{M}_{i+1}$. The rank of $\operatorname{rk}K_0(\mathcal{M}_0)$ is $2g-1$, while the blowup formula implies that $\operatorname{rk} K_0(\mathcal{M}_{i+1})-\operatorname{rk} K_0(\mathcal{M}_i)=n_i(2g-3-2i)$. We can thus compute $r_g=\operatorname{rk}\mathcal{M}=\operatorname{rk}\mathcal{M}_{g-1}$. Collecting the coefficients at $ \begin{pmatrix} 2g+1 \\ i \end{pmatrix}$ we conclude that $l_g=r_g$. It turns out that both quantities can be expressed by a closed formula.

Proposition. The equality $l_g=r_g=g \cdot 4^{g-1}$ holds.

The author os grateful to A. G. Kuznetsov and P. Belmans for interesting conversations.


Bibliography

1. A. Fonarev and A. Kuznetsov, J. Lond. Math. Soc. (2), 97:1 (2018), 24–46  crossref  mathscinet  zmath
2. M. S. Narasimhan, J. Geom. Phys., 122 (2017), 53–58  crossref  mathscinet  zmath  adsnasa
3. J. Tevelev, Braid and phantom, 2023, 39 pp., arXiv: 2304.01825
4. U. V. Desale and S. Ramanan, Invent. Math., 38:2 (1976), 161–185  crossref  mathscinet  zmath  adsnasa
5. C. Casagrande, Math. Z., 280:3-4 (2015), 981–988  crossref  mathscinet  zmath
6. I. Biswas, Duke Math. J., 88:2 (1997), 305–325  crossref  mathscinet  zmath
7. D. Bergh, V. A. Lunts, and O. M. Schnürer, Selecta Math. (N. S.), 22:4 (2016), 2535–2568  crossref  mathscinet  zmath
8. S. Bauer, Math. Ann., 290:3 (1991), 509–526  crossref  mathscinet  zmath

Citation: A. V. Fonarev, “Derived category of moduli of parabolic bundles on $\mathbb{P}^1$”, Russian Math. Surveys, 78:3 (2023), 563–565
Citation in format AMSBIB
\Bibitem{Fon23}
\by A.~V.~Fonarev
\paper Derived category of moduli of parabolic bundles on $\mathbb{P}^1$
\jour Russian Math. Surveys
\yr 2023
\vol 78
\issue 3
\pages 563--565
\mathnet{http://mi.mathnet.ru//eng/rm10116}
\crossref{https://doi.org/10.4213/rm10116e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4673249}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023RuMaS..78..563F}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001146055900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85179941650}
Linking options:
  • https://www.mathnet.ru/eng/rm10116
  • https://doi.org/10.4213/rm10116e
  • https://www.mathnet.ru/eng/rm/v78/i3/p177
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:265
    Russian version PDF:30
    English version PDF:41
    Russian version HTML:124
    English version HTML:95
    References:31
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024