All algebraic varieties considered below are defined over a basic algebraically closed field k. We follow the point of view on algebraic groups accepted in [1] and use the following notation. If S is a connected semisimple algebraic group, then ˆS is its universal cover, and π(S) is the kernel of the canonical isogeny ˆS→S. If G is a connected affine algebraic group and H is its closed subgroup, then εG,H:Homalg(H,Gm)→Pic(G/H) is the homomorphism that maps each character χ:H→Gm to the class of the one-dimensional homogeneous vector bundle over G/H determined by χ (see [2], Theorem 4). If φ:X→Y is a morphism of smooth irreducible algebraic varieties, then φ∗:Pic(Y)→Pic(X) is the homomorphism of Picard groups associated with φ (see [3], Chap. III, § 1.2). Recall that the derived subgroup of a connected reductive algebraic group is connected and semisimple (see [1], § § I.2.2 and II.14.2).
The purpose of this note is to prove the following theorem.
Theorem. Let G be a connected affine algebraic group, let Ru(G) be its unipotent radical, let ϱ:G→G/Ru(G) be the canonical homomorphism, let S be the derived subgroup of the connected reductive group G/Ru(G), and let ι:S↪G/Ru(G) be the identity embedding. Then the following canonical homomorphisms are isomorphisms:
Corollary. The group Pic(G) is canonically isomorphic to the group Homalg(π(S),Gm) and is non-canonically isomorphic to the group π(S).
Example. Let G=GLn. Then the group Ru(G) is trivial, and the derived group of the group G is the semisimple group SLn. The latter is simply connected, so the group π(SLn) is trivial. Therefore, by the theorem, the group Pic(G) is trivial. This agrees with the fact that the group variety of the group GLn is isomorphic to an open subset of An2.
The following lemma is used in the proof of the theorem.
Lemma. Let X be an irreducible smooth algebraic variety, let U be a nonempty open subset of Ad, and let u0 be a point of U. Then for the morphisms
α:X×U→X,(x,u)↦x,andβ:X→X×U,x↦(x,u0),
the homomorphisms α∗ and β∗ are mutually inverse isomorphisms.
Proof of the lemma. Consider the morphisms
γ:X×Ad→X,(x,a)↦x,andδ:X×U→X×Ad,(x,u)↦(x,u).
It follows from (1) and (2) that the following equalities hold:
γ∘δ∘β=idXandα∘β=idX.
As is known, γ∗ is an isomorphism (see [4], Chap. II, Proposition 6.6 and its proof) and δ∗ is a surjection (see [4], Chap. II, Proposition 6.5, (a)). From this and the left-hand equality in (3) it follows that β∗ is an isomorphism. In view of the right-hand equality in (3), this shows that α∗ also is an isomorphism, and α∗ and β∗ are mutually inverse. □
Proof of the theorem and corollary. Since the connected affine algebraic group Ru(G) is unipotent, it follows from [5], Propositions 1 and 2, that
(a) the group variety of Ru(G) is isomorphic to an affine space;
(b) the following commutative diagram exists:
(4)
where τ is an isomorphism of group varieties (but, generally speaking, not of groups) and υ is the natural projection onto the second factor.
In view of the lemma it follows from (a) and (4) that ϱ∗ is an isomorphism.
According to [6], Theorem 1, the group G/Ru(G) contains a torus Z such that the mapping
μ:S×Z→G/Ru(G),(s,z)↦sz
is an isomorphism of group varieties (but not of groups in general). Consider the commutative diagram
(5)
in which ν:S→S×Z, s↦(s,e), where e is the identity element. Since the group variety of the torus Z is isomorphic to an open subset of the affine space, (5) and the lemma imply that ι∗ is an isomorphism.
In view of the semisimplicity of the group ˆS the group Homalg(ˆS,Gm) is trivial, and since the group ˆS is simply connected, the group Pic(ˆS) is trivial (see [2], Proposition 1). According to [2], Theorem 4, it follows from this that εˆS,π(S) is an isomorphism. This completes the proof of the theorem.
The first part of the corollary follows directly from the theorem, while the second part follows from the fact that π(S) is a finite abelian group. □
Remark. The above theorem corrects Theorem 6 in [2]. The latter asserts that the group Pic(G) is isomorphic to π(G/R(G)), where R(G) is the solvable radical of G. If the group extension 1→R(G)→G→G/R(G)→1 splits, then the group G/R(G) is isomorphic to the derived group of G/Ru(G), and so the formulated assertion is true in view of the above theorem. But in general this is not the case, as the example above shows: in it the group G/R(G) is isomorphic to PGLn, and π(PGLn) is isomorphic to the group of all nth roots of 1 in the field k. This latter group is non-trivial if n is not a power of the characteristic of the field k (however, the group Pic(G) is trivial for every n).
I am grateful to Shuai Wang for bringing this example to my attention; this led to writing of this note. I am also indebted to S. O. Gorchinskiy, whose comments led to the above proof of the lemma and the emphasis on the canonical nature of the construction (the original proof of Lemma in the preprint [7] was more geometric).
Bibliography
1.
A. Borel, Linear algebraic groups, Grad. Texts in Math., 126, 2nd ed., Springer-Verlag, New York, 1991, xii+288 с.
2.
V. L. Popov, Math. USSR-Izv., 8:2 (1974), 301–327
3.
I. R. Shafarevich, Basic algebraic geometry, v. 1, Varieties in projective space, 3rd ed., Springer, Heidelberg, 2013, xviii+310 pp. ; v. 2, Schemes and complex manifolds, 3rd ed., 2013, xiv+262 pp.
4.
R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977, xvi+496 pp.
5.
A. Grothendieck, Séminaire C. Chevalley, t. 3, Anneaux de Chow et applications, 2e année, Secrétariat mathématique, Paris, 1958, Exp. No. 5, , 29 pp.
6.
V. L. Popov, “Group varieties and group structures”, Izv. Math., 86:5 (2022), 903–924
7.
V. L. Popov, Picard group of connected affine algebraic group, 2023, 3 pp., arXiv: 2302.13374v1
Citation:
V. L. Popov, “Picard group of a connected affine algebraic group”, Russian Math. Surveys, 78:4 (2023), 794–796