Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2023, Volume 78, Issue 1, Pages 205–207
DOI: https://doi.org/10.4213/rm10096e
(Mi rm10096)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

Cyclic Frobenius algebras

V. M. Buchstaberab, A. V. Mikhailovc

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Lomonosov Moscow State University
c University of Leeds, Leeds, UK
References:
Funding agency Grant number
Engineering and Physical Sciences Research Council EP/V050451/1
The second-named author is grateful to the Engineering and Physical Sciences Research Council for their support (grant no. EP/V050451/1).
Received: 30.12.2022
Bibliographic databases:
Document Type: Article
MSC: 16B99, 35Q53
Language: English
Original paper language: Russian

Let $\mathcal{A}$ be an associative $\mathbb{C}$-algebra with unit element 1 and $\mathcal{M}$ be a $\mathbb{C}$-linear space, $\dim\mathcal{M}\geqslant 1$.

Definition 1. A cyclic Frobenius algebra (a $\operatorname{CF}$-algebra) $\mathcal{A}$ is by definition an algebra $\mathcal{A}$ with $\mathbb{C}$-bilinear skew-symmetric form $\Phi(\,\cdot\,{,}\,\cdot\,) \colon \mathcal{A}\otimes_\mathbb{C} \mathcal{A}\to \mathcal{M}$ such that $ \Phi(A,BC)+\Phi(B,CA)+\Phi(C,AB)=0$, $A,B,C \in\mathcal{A}$.

Examples: 1) $\mathcal{M}=\mathcal{A}$ and $\Phi(A,B)=AB-BA=[A,B]$; 2) $\mathcal{A}$ is a commutative algebra with Poisson bracket $\{\,\cdot\,{,}\,\cdot\,\}$, $\mathcal{M}=\mathcal{A}$, and $\Phi(A,B)=\{A,B\}$; 3) cyclic Frobenius algebras with $\mathcal{M}$ a field can be obtained using the constructions of algebras from [1] and [5].

Consider the $\mathbb{C}$-linear subspace $\operatorname{Span}$ of $ \mathcal{A}$ spanned by all commutators $[A,B]\in \mathcal{A}$, and consider the projection $\pi\colon \mathcal{A}\to \mathcal{A}/\operatorname{Span}$. Set $A\approx B$ if $A-B\in\operatorname{Span}$.

Lemma 1. Let $\varphi(\,\cdot\,{,}\,\cdot\,)\colon \mathcal{A}\otimes \mathcal{A}\to \mathcal{A}$ be a $\mathbb{C}$-bilinear skew-symmetric form, and let $\varphi(A,BC)\approx\varphi(A,B)C+B\varphi(A,C)$. Then $\mathcal{A}$ is a cyclic Forbenius algebra for $\mathcal{M}=\mathcal{A}/\operatorname{Span}$ and $\Phi=\pi\varphi$.

Set $\mathcal{K}=\{B\in\mathcal{A}\colon\Phi(A,B)=0 \text{ for all } A\in\mathcal{A}\}$. It follows from Definition 1 that $\mathcal{K}$ is a subring of $\mathcal{A}$, $1\in \mathcal{K}$, and $\Phi(A,bC)=\Phi(Ab,C)$ for all $A,C \in\mathcal{A}$ and $b\in\mathcal{K}$.

Let $\mathfrak{A}=\mathbb{C}\langle u_0,u_1,\ldots\rangle= \textstyle\bigoplus_{k=0}^\infty\mathfrak{A}_k$ be a free associative graded algebra with differentiation operator $D$, let $|u_k|=k+2$, and let $D(u_k)=u_{k+1}$, $k=0,1,\dots$ . Consider the algebra $\mathfrak{A}^D= \{A=\sum_{i\leqslant m}a_iD^i,\, a_m\ne 0,\, m\in \mathbb{Z},\, a_i\in \mathfrak{A}_{|a_m|+m-i}\}$, where $[D,u_k]=u_{k+1}$ and $[D^{-1},u_k]=\sum_{i\geqslant 1}(-1)^i u_{k+i}D^{-i-1}$. Let $A_++A_-=A \in \mathfrak{A}^D$, where $A_+= \sum_{0\leqslant i\leqslant m} a_iD^{i}$ for $m\geqslant 0$ and $A_+=0$ for $m<0$. Then we have $\operatorname{res}[D,A]=D(\operatorname{res}A)$, where $\operatorname{res} A=a_{-1}$. Let $\sigma(\,\cdot\,{,}\,\cdot\,)\colon \mathfrak{A}^D\otimes\mathfrak{A}^D \to \mathfrak{A}$ be a homogeneous $\mathbb{C}$-bilinear skew-symmetric form satisfying $\sigma(A,B)|=|A|+|B|$ and defined by

$$ \begin{equation*} \sigma(aD^n,bD^m)= \frac{1}{2}\begin{pmatrix} n\\ n+m+1\end{pmatrix} \sum_{s=0}^{n+m}\!(-1)^s (a^{(s)}b^{(n+m-s)}\!+b^{(n+m-s)}a^{(s)}), \end{equation*} \notag $$
for $n+m \geqslant 0$, $nm<0$, and by $\sigma(aD^n,bD^m)=0$ otherwise.

Lemma 2. For any $A,B \in \mathfrak{A}^D$ the equality $D(\sigma(A,B))=\operatorname{res}[A,B]-\Delta(A,B)$ holds, where

$$ \begin{equation*} \begin{gathered} \, \Delta(aD^n,bD^m)=\frac{1}{2}\begin{pmatrix} n\\n+m+1 \end{pmatrix} \bigl([a,b^{(n+m+1)}]+(-1)^{n+m}[b,a^{(n+m+1)}]\bigr) \end{gathered} \end{equation*} \notag $$
for $n+m \geqslant -1$ and $\Delta(aD^n,bD^m)=0$ otherwise.

Lemma 3. Under the canonical projection $\pi\colon \mathfrak{A}\to \mathfrak{A}/\operatorname{Span}=\mathcal{M}=\bigoplus_{k=0}^\infty\mathcal{M}_k$ the operator $D$ induces a monomorphism $\overline{D}\colon \mathcal{M}_k \to \mathcal{M}_{k+1}$, $k>0$.

Theorem 1. The algebra $\mathfrak{A}^D$ is a cyclic Forbenius algebra with form $\Phi=\pi\sigma\colon \mathfrak{A}^D\otimes\mathfrak{A}^D\to \mathcal{M}$ such that $\mathcal{K}=\mathfrak{A}$ and $\Phi(D^n,D^{-n})=n$, $n\in \mathbb{Z}$.

Corollary 1. The form $\Phi$ is non-degenerate on the set $\{D^n,\, n\in \mathbb{Z}\}$ of generators of the free left $\mathfrak{A}$-module $\mathfrak{A}^D$.

Set $L=D^2-u$ and $\mathcal{L}=D+ \sum_{i\geqslant1} I_{i}D^{-i}$, $I_{i}\in \mathfrak{A}_{i+1}$, where $\mathcal{L}^2=L$. Then we obtain the sequence of series $\mathcal{L}^{2k-1}$, $k\in\mathbb{N}$. Set

$$ \begin{equation*} \sigma_{2k-1,2n-1}=\sigma(\mathcal{L}_+^{2k-1},\mathcal{L}^{2n-1})\in\mathfrak{A}_{2n+2k-2} \ \ \text{and}\ \ \rho_{2n}=\sigma_{1,2n-1}=\operatorname{res}\mathcal{L}^{2n-1},\ \ n>0. \end{equation*} \notag $$
From the properties of $\sigma(\,\cdot\,{,}\,\cdot\,)$ we obtain the equality $\sigma_{2k-1,2n-1}=\sigma_{2n-1,2k-1}$ for $k,n\in\mathbb{N}$.

We introduce differentiations $D_{2k-1}$, $k\in\mathbb{N}$, of the ring $\mathfrak{A}$ by setting

$$ \begin{equation*} D_1=D,\quad [D,D_{2k-1}]=0,\quad D_{2k-1}(u)=-2D(\rho_{2k}),\quad k\in\mathbb{N}. \end{equation*} \notag $$

Corollary 2. The equality $[D_{2k-1},D_{2n-1}]=0$ holds.

Let $u=u(t_1,t_3,\dots)$. Set $\partial_{t_{2k-1}}(u)=D_{2k-1}(u)$.

Theorem 2. The system of equations $\partial_{t_{2k-1}}(u)=-2D(\rho_{2k}(u))$, $k\in \mathbb{N}$, where $\rho_2(u)=-u/2$, coincides with the Korteweg–de Vries (KdV) hierarchy on $\mathfrak{A}$:

$$ \begin{equation*} 4\partial_{t_3}(u)=D(u_2-3u^2),\quad 16\partial_{t_5}(u)=D(u_4-5u_2u-5uu_2-5u_1^2+10u^3),\quad\ldots\,. \end{equation*} \notag $$

Proof. This follows from the above construction (cf. [2]–[6]).

Following [3], for $N\in \mathbb{N}$ set $F_{2N+2}(u)=\rho_{2N+2}+\sum_{k=0}^{N-1}\alpha_{2(N-k+1)}\rho_{2k}$, where $\rho_0= 1$ and $\alpha_4,\dots,\alpha_{2N+2}$ are free parameters. The equation $F_{2N+2}(u)=0$ is called Novikov’s $N$-equation. Let $J(F)$ be the two-sided $D$-differential ideal in $\mathfrak{A}$ generated by $F_{2N+2}(u)$. Since $2^{2k+1}\rho_{2k+2}=u_{2k}+f(u_{2k-2},\dots,u)$ and $u_{k+1}=D^k(u)$, on the quotient algebra $\mathfrak{A}/J(F)=\mathbb{C}\langle u,\dots,u_{2N-1}\rangle$ the KdV hierarchy (see Theorem 2) reduces to Novikov’s $N$-hierarchy, where the first system represents Novikov’s $N$-equation in the form $D(u_k)=u_{k+1}$ for $0\leqslant k< 2N-1$ and $D(u_{2N-1})=-f(u_{2k-2},\dots,u)$. It was shown in [3] that, in terms of the form $\Phi$ (see Theorem 1), the polynomials

$$ \begin{equation} H_{2n+1,2N+1}=\sigma_{2n+1,2N+1}+ \sum_{k=1}^{N-1}\alpha_{2(N-k+1)}\sigma_{2n+1,2k-1},\qquad n=1,\dots,N, \end{equation} \tag{1} $$
define the first integrals $\widehat{H}_{2n+1,2N+1}=\pi(H_{2n+1,2N+1})$ of this hierarchy.

Theorem 3. In the quantum case Novikov’s $N$-hierarchy (see [3]) can be written as consistent systems of Heisenberg’s equation. The polynomials (1) are commuting quantum Hamiltonians of this hierarchy, which are selfadjoint in the case when the parameters $\alpha_4,\dots,\alpha_{2N+2}$ take real values.

The authors are grateful to S. P. Nivikov and V. N. Rubtsov for stimulating discussions of the results presented in this note.


Bibliography

1. M. Aguiar, J. Algebra, 244:2 (2001), 492–532  crossref  mathscinet  zmath
2. V. M. Buchstaber and A. V. Mikhailov, Uspekhi Mat. Nauk, 76:4(460) (2021), 37–104  mathnet  crossref  mathscinet  zmath; English transl. in Russian Math. Surveys, 76:4 (2021), 587–652  crossref  adsnasa
3. V. M. Buchstaber and A. V. Mikhailov, KdV hierarchies and quantum Novikov's equations, 2021, 21 pp., arXiv: 2109.06357
4. I. M. Gel'fand and L. A. Dikii, Uspekhi Mat. Nauk, 30:5(185) (1975), 67–100  mathnet  mathscinet  zmath; English transl. in Russian Math. Surveys, 30:5 (1975), 77–113  crossref  adsnasa
5. A. V. Odesskii, V. N. Rubtsov, and V. V. Sokolov, Teoret. Mat. Fiz., 171:1 (2012), 26–32  mathnet  crossref  mathscinet  zmath; English transl. in Theoret. and Math. Phys., 171:1 (2012), 442–447  crossref  adsnasa
6. V. Sokolov, Algebraic structures in integrability, World Sci. Publ., Hackensack, NJ, 2020, xviii+327 pp.  crossref  mathscinet  zmath

Citation: V. M. Buchstaber, A. V. Mikhailov, “Cyclic Frobenius algebras”, Russian Math. Surveys, 78:1 (2023), 205–207
Citation in format AMSBIB
\Bibitem{BucMik23}
\by V.~M.~Buchstaber, A.~V.~Mikhailov
\paper Cyclic Frobenius algebras
\jour Russian Math. Surveys
\yr 2023
\vol 78
\issue 1
\pages 205--207
\mathnet{http://mi.mathnet.ru//eng/rm10096}
\crossref{https://doi.org/10.4213/rm10096e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4634799}
\zmath{https://zbmath.org/?q=an:07745489}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023RuMaS..78..205B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001057003200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85167924629}
Linking options:
  • https://www.mathnet.ru/eng/rm10096
  • https://doi.org/10.4213/rm10096e
  • https://www.mathnet.ru/eng/rm/v78/i1/p207
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:397
    Russian version PDF:53
    English version PDF:74
    Russian version HTML:246
    English version HTML:119
    References:47
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024