Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2023, Volume 78, Issue 2, Pages 396–398
DOI: https://doi.org/10.4213/rm10094e
(Mi rm10094)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

Index of minimal surfaces in the 3-sphere

E. A. Morozovab, A. V. Penskoica

a HSE University
b Independent University of Moscow
c Lomonosov Moscow State University
References:
Funding agency Grant number
Russian Science Foundation 20-11-20214
The research of A. V. Penskoi (§ 2) was supported by the Russian Science Foundation under grant no. 20-11-20214 and carried out at the Faculty of Mechanics and Mathematics of Moscow State University.
Received: 01.12.2022
Bibliographic databases:
Document Type: Article
MSC: 49Q05, 58J50
Language: English
Original paper language: Russian

Introduction

Let $\Sigma$ be an orientable surface without boundary and $\varphi\colon\Sigma\looparrowright\mathbb{S}^3\subset\mathbb{R}^4$ be a minimal immersion of $\Sigma$ in a sphere $\mathbb{S}^3$ of radius 1. Consider the map $\widetilde\varphi\colon\Sigma\to\mathbb{R}^4\mathrel{\wedge}\mathbb{R}^4\cong\mathbb{R}^6$ defined by $\widetilde\varphi(x)=\varphi(x)\wedge\nu(x)$, where $\nu$ is a unit normal field to $\varphi(\Sigma)$. It is known that $\widetilde\varphi(\Sigma)\subset\mathbb{S}^5$ and $\widetilde\varphi\colon\Sigma\looparrowright\mathbb{S}^5$ also is a minimal immersion ([2], § 11).

Definition. The image of $\widetilde\varphi$ is called the bipolar surface to $\varphi(\Sigma)$.

Let $g$ and $\widetilde g$ denote the metrics on $\Sigma$ induced by the immersions $\varphi$ and $\widetilde\varphi$, respectively. In what follows we use the notation $\Sigma$ implying the metric $g$, and we write $\widetilde\Sigma$ implying $\widetilde g$.

The second variation of the area functional on $\Sigma$ defines a Jacobi stability operator on normal vector fields. Since the normal bundle is trivial, we obtain the operator $J={\Delta-4+2K}$ acting on functions [6], where $\Delta$ and $K$ denote the Laplace–Beltrami operator and Gaussian curvature on $\Sigma$, respectively.

Definition. The index $\operatorname{ind}\Sigma$ of the minimal surface $\Sigma$ is the number, counting with multiplicity, of negative eigenvalues of the operator $J$, and the nullity $\operatorname{null}\Sigma$ of the minimal surface $\Sigma$ is the dimension of the kernel of $J$.

1. The relationship between the index and nullity of the surface $\Sigma$ and the spectrum of $\widetilde\Sigma$

Let $\widetilde\Delta$ be the Laplace–Beltrami operator on $\widetilde\Sigma$. It is known that $\widetilde g=(2-K)g$ and $\widetilde\Delta=(2-K)^{-1}\Delta$ ([2], § 11). Let $N_{\widetilde\Sigma}(\lambda)$ denote the number of eigenvalues less than $\lambda$ of $\widetilde\Delta$.

Theorem 1. For each minimal immersion $\varphi\colon\Sigma\looparrowright\mathbb{S}^3$ the nullity $\operatorname{null}\Sigma$ is equal to the multiplicity of the eigenvalue 2 of the operator $\widetilde\Delta$, and the index $\operatorname{ind}\Sigma$ is equal to $N_{\widetilde\Sigma}(2)$.

Proof. Let $\rho=2-K$; then $\widetilde\Delta=\rho^{-1}\Delta$ and $J=\Delta-2\rho$. The eigenfunctions with eigenvalue 0 of $J$ correspond to the eigenfunctions with eigenvalue 2 of $\widetilde\Delta$. This yields the assertion of Theorem 1 concerning the nullity.

We denote the $k$th eigenvalues of $\widetilde\Delta$ and $J$ by $\lambda_k$ and $\mu_k$, respectively. Let $R_{\widetilde\Delta}[f]=\displaystyle\int_\Sigma |\nabla f|^2\,dv_g\!\!\Bigm/\!\!\! \displaystyle\int_\Sigma \rho f^2\,dv_g$ and $R_J[f]=\displaystyle\int_\Sigma(|\nabla f|^2-2\rho f^2)\,dv_g\!\!\Bigm/\!\!\! \displaystyle\int_\Sigma f^2\,dv_g$ be the Rayleigh quotients for the operators $\widetilde\Delta$ and $J$ (here $f\in H^1(\Sigma,dv_g)$, and $dv_g$ is the volume form of the metric $g$).

Suppose that $\lambda_k<2$ for some $k$. Let $\Phi\subset H^1(\Sigma,dv_g)$ be the subspace spanned by the eigenfunctions $\widetilde\Delta$ with eigenvalues $0=\lambda_0<\lambda_1\leqslant\cdots\leqslant\lambda_k$. Then for each function $f\in\Phi\setminus\{0\}$ we have $R_{\widetilde\Delta}[f]\leqslant\lambda_k<2$, so that $R_J[f]<0$. Hence $\mu_k\leqslant\sup_{f\in\Phi}R_J[f]<0$, where the second inequality is strict because the supremum is attained on a function from $\Phi$. Thus we have shown that if $\lambda_k<2$, then $\mu_k<0$. In a similar way, if $\mu_k<0$, then $\lambda_k<2$. Therefore, $\operatorname{ind}\Sigma=N_{\widetilde\Sigma}(2)$. $\Box$

Corollary. For Otsuki tori $O_{p/q}\subset\mathbb{S}^3$ (defined originally in [3]; we use the notation introduced in [5] and used in [1]) the equalities $\operatorname{ind} O_{p/q}=2q+4p-2$ and $\operatorname{null} O_{p/q}= 5$ hold.

Proof. It follows from [1] that if $\Sigma=O_{p/q}$, then $N_{\widetilde\Sigma}(2)=2q+4p-2$ and the eigenvalue 2 has multiplicity 2 on $\widetilde\Sigma$, so this is a consequence of the theorem. $\Box$

2. The indices of Lawson $\tau$-surfaces

Unfortunately, Theorem 1 does not ‘automatically’ return the index and nullity of an arbitrary minimal surface in $\mathbb{S}^3$. Apart from the fact that the calculation of $N_{\widetilde\Sigma}(2)$ is a difficult problem, in important examples $\Sigma$ is either non-orientable, or the map $\widetilde\varphi$ is a non-trivial covering. In particular, one comes up against such obstacles in investigating the important family of Lawson $\tau$-surfaces. These surfaces must be considered separately using the method of separation of variables presented in [4] and [5].

Definition. The image of the doubly periodic immersion $\Psi_{m,k}\colon\mathbb{R}^2\looparrowright\mathbb{S}^3\subset \mathbb{R}^4$ defined by $\Psi_{m,k}(x,y)=(\cos mx \cos y,\sin mx \cos y, \cos kx \sin y,\sin kx \sin y)$ is called the Lawson surface $\tau_{m,k}$ (see [2]).

It is known [2] that for each unordered pair $(m,k)\in\mathbb{N}\times\mathbb{N}$, $\operatorname{\textrm{GCD}}(m,k)=1$, the surface $\tau_{m,k}$ is a compact minimal surface in $\mathbb{S}^3$ distinct from the other surfaces in the family. If $m$ and $k$ are odd, then $\tau_{m,k}$ is a torus, while if either $m$ or $k$ is even, then $\tau_{m,k}$ is a Klein bottle. We present a result for the Klein bottle $\tau_{2,1}$; other $\tau_{m,k}$ are considered in the forthcoming paper of the second-named author.

Theorem 2. For the Lawson Klein bottle $\tau_{2,1}$ the equalities $\operatorname{null}\tau_{2,1}=5$ and $\operatorname{ind}\tau_{2,1}=7$ hold.

Proof. The map $\Psi_{m,k}$ has periods $T_1=(2\pi,0)$ and $T_2=(0,2\pi)$. For the Lawson Klein bottles $\tau_{m,k}$ the torus $\mathbb{R}^2/\{aT_1+bT_2\colon a,b\in\mathbb{Z}\}$ with metric induced by the immersion $\Psi_{m,k}$ is a two-sheeted covering of $\tau_{m,k}$ two because $\Psi_{m,k}$ is also invariant under the transformation $(x,y)\mapsto(x+\pi,-y)$, so we can take $(x,y)\in[0,\pi)\times[-\pi,\pi)$ as coordinates on $\tau_{m,k}$. The spectral problem for the Jacobi operator reads
$$ \begin{equation*} -\dfrac{1}{p(y)^2}\,\dfrac{\partial^2 f}{\partial x^2}- \dfrac{1}{p(y)}\,\dfrac{\partial}{\partial y} \biggl(p(y)\dfrac{\partial f}{\partial y}\biggr)-2f- \dfrac{2m^2k^2}{p(y)^4}f=\lambda f, \end{equation*} \notag $$
where $p(y)=\sqrt{k^2+(m^2-k^2)\cos^2y}$ , with boundary conditions $f(x+\pi,-y)=-f(x,y)$ and $f(x,y+2\pi)=f(x,y)$. Since this Jacobi operator commutes with $\partial/\partial x$, we can reduce this spectral problem to one-dimensional ones using the approach from [4] and [5]. Then we obtain the family of one-dimensional spectral problems
$$ \begin{equation*} -\dfrac{1}{p(y)}\,\dfrac{d}{dy}\biggl(p(y)\dfrac{d\varphi(y)}{dy}\biggr)+ \biggl(\dfrac{l^2}{p(y)^2}-2- \dfrac{2m^2k^2}{p(y)^4}-\lambda\biggr)\varphi(y)=0,\qquad \varphi(y+2\pi)\equiv\varphi(y), \end{equation*} \notag $$
with spectrum $\lambda_i(l)$ and with solutions $\varphi_i(l,y)$. The required result is obtained by analyzing them using the methods from [4]. $\Box$

The authors are grateful to M. Karpukhin for useful discussions.


Bibliography

1. M. A. Karpukhin, J. Spectr. Theory, 4:1 (2014), 87–111  crossref  mathscinet  zmath
2. H. B. Lawson, Jr., Ann. of Math. (2), 92:3 (1970), 335–374  crossref  mathscinet  zmath
3. T. Otsuki, Amer. J. Math., 92 (1970), 145–173  crossref  mathscinet  zmath
4. A. V. Penskoi, Mosc. Math. J., 12:1 (2012), 173–192  mathnet  crossref  mathscinet  zmath
5. A. V. Penskoi, Math. Nachr., 286:4 (2013), 379–391  crossref  mathscinet  zmath
6. J. Simons, Ann. of Math. (2), 88 (1968), 62–105  crossref  mathscinet  zmath

Citation: E. A. Morozov, A. V. Penskoi, “Index of minimal surfaces in the 3-sphere”, Russian Math. Surveys, 78:2 (2023), 396–398
Citation in format AMSBIB
\Bibitem{MorPen23}
\by E.~A.~Morozov, A.~V.~Penskoi
\paper Index of minimal surfaces in the 3-sphere
\jour Russian Math. Surveys
\yr 2023
\vol 78
\issue 2
\pages 396--398
\mathnet{http://mi.mathnet.ru//eng/rm10094}
\crossref{https://doi.org/10.4213/rm10094e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4653855}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023RuMaS..78..396M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001086942800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85175156679}
Linking options:
  • https://www.mathnet.ru/eng/rm10094
  • https://doi.org/10.4213/rm10094e
  • https://www.mathnet.ru/eng/rm/v78/i2/p195
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:330
    Russian version PDF:50
    English version PDF:79
    Russian version HTML:186
    English version HTML:103
    References:48
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024