Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2022, Volume 77, Issue 5, Pages 949–951
DOI: https://doi.org/10.4213/rm10073e
(Mi rm10073)
 

Brief Communications

Cohomological realization of the Buchstaber formal group law

M. Bakuradzeab

a A. Razmadze Mathematical Institute, Georgian Academy of Sciences
b Iv. Javakhishvili Tbilisi State University, Faculty of Exact and Natural Sciences, Tbilisi, Georgia
References:
Funding agency Grant number
Shota Rustaveli National Science Foundation FR-21-4713
The author was supported by the Shota Rustaveli NSF (grant no. FR-21-4713).
Received: 01.08.2022
Russian version:
Uspekhi Matematicheskikh Nauk, 2022, Volume 77, Issue 5(467), Pages 189–190
DOI: https://doi.org/10.4213/rm10073
Bibliographic databases:
Document Type: Article
MSC: 55N22
Language: English
Original paper language: Russian

In this paper we construct a commutative complex oriented cohomology theory whose coefficient ring is the coefficient ring of the Buchstaber formal group law with inverted 2. As shown in [11], after being localized away from 2, the forgetful map from the special unitary cobordism $\mathbf{MSU}_*[1/2]=\mathbb{Z}[1/2][x_2,x_3,\dots]$ to the complex cobordism $\mathbf{MU}_*[1/2]$ is an injection. We define the following ideal extensions in $\mathbf{MU}_*[1/2]$: the ideal $J_{{\rm SU}}^e$ generated by arbitrary polynomial generators $x_n$ of $\mathbf{MSU}_*[1/2]$, $n\geqslant 5$, viewed as elements of $\mathbf{MU}_*[1/2]$; the ideal $J_{T}^e$ generated by the ${\rm SU}$-flops [12] of dimension $\geqslant 10$, also viewed as elements of $\mathbf{MU}_*[1/2]$; and the extension $J_B^e$, where $J_B$ is the ideal in $\mathbf{MU}_*$ generated by the elements $\{A_{ij},i,j\geqslant 3\}$, defined in [3] and [2] as the coefficients of the formal power series $\sum A_{ij}x^iy^j=F(x,y)(x\omega(y)-y\omega(x))$, where $F(x,y)=\sum\alpha_{ij}x^iy^j$ is the universal formal group law and $\omega(x)= (\partial F(x,y)/\partial y)|_{y=0}$ is the invariant differential form of $F$.

Proposition 1. (a) $J^e_B=J_{T}^e$; (b) when restricted to $\mathbf{MSU}_*[1/2]$, the classifying map of the Buchstaber formal group law localized away from 2 gives a genus with scalar ring $\mathbb{Z}[1/2][x_2,x_3,x_4]$, $|x_i|=2i$.

One motivation for this result is the restricted Krichever–Höhn complex elliptic genus, studied in [7] and [12]. For another construction with the scalar ring $\mathbb{Z}_{(2)}[a,b]$, where $|a|=2$ and $|b|=6$, see [5].

The ideal $J_B$ is not prime as taking the quotient $f_B\colon\mathbf{MU}_*\to\mathbf{MU}_*/J_B=\Lambda_B$ by it does not yield an integral domain. But it contains only $2$-torsion elements of degree $2^k-2$, $k\geqslant 3$ [6]. Using the results of [6] on the structure of $\Lambda_B$, consider the quotient map $\Lambda_B/J=\Lambda_{\mathcal{B}}$, where $J$ is generated by the elements of order 2. The ideal $J$ is prime as $\Lambda_{\mathcal{B}}$ is an integral domain, and therefore so is $J_{\mathcal{B}}=f_B^{-1}(J)$ in $\mathbf{MU}_*$. Then $J_{\mathcal{B}}$ is the kernel of the composition $\mathbf{MU}_*\to \Lambda_B\to\Lambda_{\mathcal{B}}$.

Proposition 2. There exists a multiplicative complex oriented cohomology $\mathbf{MU}^*_\Sigma$ with scalar ring the integral domain $\mathbf{MU}_*/\Sigma$, where $\Sigma=J_{\mathcal{B}}$.

Theorem 3. There exists a commutative complex oriented cohomology which is a module over $\mathbf{MU}_*[1/2]$ and has the scalar ring $\mathbf{MU}_*[1/2]$ modulo $J^e_{\rm SU}$, the ideal generated by an arbitrary set of polynomial generators of $\mathbf{MSU}_*[1/2]$ of degree $\geqslant 10$ viewed as elements of $\mathbf{MU}_*[1/2]$ by the forgetful injection map. This quotient is identical to the scalar ring of the universal Buchstaber formal group law localized away from 2.

We prove Proposition 2. (All the other proofs can be found in [4].) By Euclid’s algorithm, for any natural numbers $m_1,\dots, m_k$ one can find integers $\lambda_1,\dots, \lambda_k $ such that

$$ \begin{equation*} \sum_{i=1}^{k}\lambda_im_i=\operatorname{gcd}(m_1,\dots,m_k). \end{equation*} \notag $$
Set $d(m)=\operatorname{gcd}\bigl\{\binom{m+1}{1},\dots,\binom{m+1}{m-1}\bigr\}$, $m\geqslant 1$. By [8] one has $d(m)=p$ if $m+ 1= p^s$ for some prime $p$, and $d(m)=1$ otherwise. The elements $e_{m}=\sum_{i=1}^m \lambda_i\alpha_{im}$ are multiplicative generators in $\mathbf{MU}_*$: see [6]. By Theorem 9.9 in [6] or by [9], for
$$ \begin{equation*} D(m)=\operatorname{gcd}\biggl\{\binom{m+1}{i}-\binom{m+1}{i-1}\biggr\}, \end{equation*} \notag $$
$2<i<m-1$, $m\geqslant 5$, we have that $D(m)/d(m)$ equals 2 if $m=2^k-2$; otherwise it equals $d(m-1)$. Let $m\geqslant 4$, and let $\lambda_2,\dots,\lambda_{m-2}$ be integers such that
$$ \begin{equation*} d_2(m):=\sum_{i=2}^{m-2}\lambda_i\binom{m+1}{i}=\operatorname{gcd} \biggl\{\binom{m+1}{2},\dots,\binom{m+1}{m-2}\biggr\}. \end{equation*} \notag $$
Then by Lemma 9.7 in [6], for $m\geqslant 3$ we have $d_2(m)=d(m)d(m-1)$. For the elements $A_{ij}$, $i,j\geqslant 3$, $i+j-2=m$, and the integers $\lambda_2,\dots,\lambda_{m-2}$ corresponding to $D(m)$ consider the linear combinations
$$ \begin{equation*} T_{m}=\lambda_2 A_{3,m-1}+\lambda_3 A_{4,m-2}+\dots+\lambda_{m-2}A_{m-1,3}. \end{equation*} \notag $$

By [6], Corollary 2.10, the $f_B(e_i)$ form a minimal set of multiplicative generators of $\Lambda_B$. Set $A_l=\mathbb{Z}[e_1,e_2,\dots,e_l]$ and $A^{l+1}=\mathbb{Z}[e_{l+1},e_{l+2},\dots]$, that is, $\mathbf{MU}_*=A_l\otimes A^{l+1}$. Let $J_{\mathcal{B}}(l)$ be the ideal in $\mathbf{MU}_*=\mathbb{Z}[e_1,e_2,\dots]$ generated by only those generators in $J_{\mathcal{B}}$ with degree $\geqslant-2l$. The preimage of $J_{\mathcal{B}}(l)$ under the obvious inclusion defines an ideal of $A_l$, denoted by the same symbol, so that $\mathbf{MU}_*/J_{\mathcal{B}}(l)=A_l/J_{\mathcal{B}}(l)\otimes A^{l+1}$. The proof of Proposition 6.5 in [6] implies that $A_l/J_{\mathcal{B}}(l)$ is an integral domain, and therefore so is $\mathbf{MU}_*/J_{\mathcal{B}}(l)$ and $J_{\mathcal{B}}(l)$ is prime. To prove this we need only to modify the generating monomials of $\Lambda_{\mathcal{B}}\otimes \mathbb{F}_p$ by replacing the extra factors for $A_l/J(l)$, $p^r\leqslant l<p^{r+1}$, namely, $\beta_{p^{r+1}}^{k_1}\beta_{p^{r+2}}^{k_2}\cdots \beta_{p^{r+s}}^{k_s}\cdots$ , $k_1,k_2,\dotsc \leqslant p-1$, by the factors $\beta_{p^r}^{pk_1+p^2k_2+\cdots+p^sk_s+\cdots}$. The rank of $\Lambda^{-2m}\otimes \mathbb{F}_p$ remains the same since there is no relation (6.2) from [6] in our ring. Then by Theorem 6.1 and Proposition 6.5 in [6] we have $J_{\mathcal{B}}=J_B+(e_{2^k-2})$, $k\geqslant 3$. Let $\Sigma=(\mathcal{T}_i)=(T_n, e_m)$, where $n\ne m=2^k-2$, $n\geqslant 5$ and $k\geqslant 3$. Then $\Sigma(l)=J_{\mathcal{B}}(l)$ for all integers $l\geqslant 5$. It is clear that $\Sigma(l)\subset J_{\mathcal{B}}(l)$. We prove that $ J_{\mathcal{B}}(l)\subset \Sigma(l)$ using induction on $l$. This is obvious for $l=5$ because $T_5=A_{34}$. To prove that $J_{\mathcal{B}}(l)=(J_{\mathcal{B}}(l-1),\mathcal{T}_l)$ note that $s_{i+j-2}(A_{ij})=\binom{i+j-1}{j-1}-\binom{i+j-1}{j}$. Indeed, modulo the decomposable elements, $A_{ij}=\alpha_{i-1j}-\alpha_{ij-1}$ and $s_{i+j-1}(\alpha_{ij})=-\binom{i+j}{i}$. Now apply Euclid’s algorithm to $m_i=s_l(A_{i,l+2-i})$, fix some integers $\lambda_i$, and consider the elements $T_l$. The above identities imply that $s_l(T_l)=D(l)$ is the greatest common divisor of the integers $s_l( A_{ij})$ for $A_{ij}\in J_B$, $i+j-2=l$. It follows that $A_{ij}=(s_n(A_{ij})/D(l))T_l+P(e_1,\dots,e_{l-1})$ for some polynomial $P$. Therefore, $P\in \ker f_{\mathcal{B}}$, that is, $P\in J_{\mathcal{B}}(l-1)=\Sigma(l-1)$. It also follows that the sequence $\Sigma=(\mathcal{T}_5,\dots)$ is regular. The construction in [1] of a cobordism with singularities gives a cohomology theory $\mathbf{MU}^*_{\Sigma}(-)$, which admits an associative multiplication by [10] (Theorems 4.3 and 4.5). Moreover, all obstructions to commutativity are in $\Lambda_\mathcal{B}\otimes \mathbb{F}_2$.


Bibliography

1. N. A. Baas, Math. Scand., 33 (1973), 279–302  crossref  mathscinet  zmath
2. M. Bakuradze, Uspekhi Mat. Nauk, 68:3(411) (2013), 189–190  mathnet  crossref  mathscinet  zmath; English transl. in Russian Math. Surveys, 68:3 (2013), 571–573  crossref  adsnasa
3. M. Bakuradze, Algebraic topology, convex polytopes, and related questions, Tr. Mat. Inst. Steklova, 286, MAIK ‘Nauka/Interperiodika’, Moscow, 2014, 7–21  mathnet  crossref  mathscinet  zmath; English transl. in Proc. Steklov Inst. Math., 286 (2014), 1–15  crossref
4. M. Bakuradze, Homol. Homotopy Appl. (to appear); Polynomial generators of $\operatorname{MSU}^*[1/2]$ related to classifying maps of certain formal group laws, 2022 (v1 – 2021), 13 pp., arXiv: 2107.01395
5. V. M. Buchstaber and E. Yu. Netay, Uspekhi Mat. Nauk, 69:4(418) (2014), 181–182  mathnet  crossref  mathscinet  zmath; English transl. in Russian Math. Surveys, 69:4 (2014), 757–759  crossref  adsnasa
6. V. M. Buchstaber and A. V. Ustinov, Mat. Sb., 206:11 (2015), 19–60  mathnet  crossref  mathscinet  zmath; English transl. in Sb. Math., 206:11 (2015), 1524–1563  crossref  adsnasa
7. G. Höhn, Komplexe elliptische Geschlechter und $S^1$-aquivariante Kobordismustheorie, 2004, 84 pp., arXiv: math/0405232
8. E. E. Kummer, J. Reine Angew. Math., 1852:44 (1852), 93–146  crossref  mathscinet  zmath
9. Z. Lü and T. Panov, Algebr. Geom. Topol., 16:5 (2016), 2865–2893  crossref  mathscinet  zmath
10. O. K. Mironov, Izv. Akad. Nauk SSSR Ser. Mat., 42:4 (1978), 789–806  mathnet  mathscinet  zmath; English transl. in Izv. Math., 13:1 (1979), 89–106  crossref
11. S. P. Novikov, Mat. Sb., 57(99):4 (1962), 407–442  mathnet  mathscinet  zmath; English transl. in Topological library. Part 1: Cobordisms and their applications, Ser. Knots Everything, 39, eds. S. P. Novikov and I. A. Taimanov, World Sci. Publ., Hackensack, NJ, 2007, 211–250  crossref  mathscinet  zmath
12. B. Totaro, Ann. of Math. (2), 151:2 (2000), 757–791  crossref  mathscinet  zmath

Citation: M. Bakuradze, “Cohomological realization of the Buchstaber formal group law”, Uspekhi Mat. Nauk, 77:5(467) (2022), 189–190; Russian Math. Surveys, 77:5 (2022), 949–951
Citation in format AMSBIB
\Bibitem{Bak22}
\by M.~Bakuradze
\paper Cohomological realization of the Buchstaber formal group law
\jour Uspekhi Mat. Nauk
\yr 2022
\vol 77
\issue 5(467)
\pages 189--190
\mathnet{http://mi.mathnet.ru/rm10073}
\crossref{https://doi.org/10.4213/rm10073}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4582591}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022RuMaS..77..949B}
\transl
\jour Russian Math. Surveys
\yr 2022
\vol 77
\issue 5
\pages 949--951
\crossref{https://doi.org/10.4213/rm10073e}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000992306600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85163884806}
Linking options:
  • https://www.mathnet.ru/eng/rm10073
  • https://doi.org/10.4213/rm10073e
  • https://www.mathnet.ru/eng/rm/v77/i5/p189
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:255
    Russian version PDF:14
    English version PDF:51
    Russian version HTML:100
    English version HTML:76
    References:51
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024